Treating Diabetes with Exercise – Focus on the Microvasculature

Veldig viktig studie som nevner at det ikke finnes glatt muskulatur i kapillærene, så det er arteriolene som avgjør blodsirkulasjonen i kapillærene. His blodsirkulasjonen i en arteriole blir dårlig stopper sirkulasjonen opp i et område av muskelen som serveres av kapillærene.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000229

Abstract

The rising incidence of diabetes and the associated metabolic diseases including obesity, cardiovascular disease and hypertension have led to investigation of a number of drugs to treat these diseases. However, lifestyle interventions including diet and exercise remain the first line of defense. The benefits of exercise are typically presented in terms of weight loss, improved body composition and reduced fat mass, but exercise can have many other beneficial effects. Acute effects of exercise include major changes in blood flow through active muscle, an active hyperemia that increases the delivery of oxygen to the working muscle fibers. Longer term exercise training can affect the vasculature, improving endothelial health and possibly basal metabolic rates. Further, insulin sensitivity is improved both acutely after a single bout of exercise and shows chronic effects with exercise training, effectively reducing diabetes risk. Exercise-mediated improvements in endothelial function may also reduce complications associated with both diabetes and other metabolic disease. Thus, while drugs to improve microvascular function in diabetes continue to be investigated, exercise can also provide many similar benefits on endothelial function and should remain the first prescription when treating insulin resistance and diabetes. This review will investigate the effects of exercise on the blood vessel and the potential benefits of exercise on cardiovascular disease and diabetes.

At rest, a low proportion of capillaries are exposed to blood flow at one time, with a rapid increase in the number of perfused capillaries after exercise [31], thus increasing functional capillary density.

Vascular smooth muscle cells are located around the arterioles and some venules, and can constrict to change blood flow patterns, while capillaries do not typically contribute to blood flow changes [30] (Figure 1). Blood flow through capillaries is controlled upstream by small arterioles at rest, and the rapid recruitment of unperfused capillaries by exercise could suggest that nerves are responsible for this action [34]. The sympathetic nervous system is mainly responsible for the vasoconstrictor responses, and as the arterioles and larger vessels are innervated [38] the majority of sympathetic nervous system activity is localized to that area of the vascular tree. Physical exercise can enhance sympathetic nerve activity [39] to maintain arterial pressure, and may be involved in maintaining exercise tolerance, as reviewed by Thomas and Segal [38].

Structural differences between artery, arteriole and capillary. No vascular smooth muscle is located on the capillary; therefore flow through capillaires is modified by pre-capillary arterioles. Cessation of flow through arterioles will prevent flow through a portion of the muscle.

Insulin relies on endothelium-dependent vasodilation to enhance perfusion, thus endothelial dysfunction reduces insulin-mediated increases in muscle perfusion, which can contribute to the metabolic deficit in diabetes. As exercise-mediated changes in perfusion are typically endothelium-independent, exercise is still able to recruit capillaries and thus increase muscle perfusion in obesity and type 2 diabetes, even in the face of endothelial dysfunction. Numerous studies have now shown that while insulin’s vascular effects may be blocked in diabetes, exercise still maintains its ability to increase the distribution of blood flow through muscle [42].

Nitric oxide (NO) is the main vasodilator from the endothelium specifically involved in blood flow and blood distribution, and while reduction in nitric oxide synthesis lowered total blood flow, exercise-mediated capillary recruitment was not affected [46]. In fact, inhibition of NO formation enhances both resting and exercise-mediated muscle oxygen uptake [47]; despite a reduction in total flow, microvascular flow was not affected, suggesting that NO is not involved in the vascular response to exercise.

The distribution of blood through muscle increases the capacity for nutrient exchange. In exercise the primary purpose of functional hyperemiais for oxygen delivery, as the oxygen required by exercising muscle is much higher than resting muscle (reviewed in [37]). Recruitment of capillaries can decrease the velocity of blood flow by increasing the cross-sectional area of the capillary bed and the time available for exchange. Recruitment also increases surface area for exchange and decreases perfusion distances to promote oxygen delivery to tissues with exercise [34] (Figure 2). While in exercise the main metabolite required at the working muscle is oxygen, distribution of other nutrients can also be affected, including glucose, fats, other hormones and cytokines. Muscle metabolism can therefore be altered by perfusion of the tissue [48,49]. While there can be regulated transport of certain larger hormones across the vasculature [50,51], smaller molecules can diffuse across the endothelium easily, possibly making muscle perfusion a more important player in the delivery of glucose and oxygen to the tissue.

Vasodilation affects delivery, and thus metabolism. The rate of transfer across the endothelium is dependent on surface area, permeability of the endothelium, diffusion distance, and concentration difference (Fick’s first law of diffusion). Vasodilation increases surface area in arterioles for exchange, but will also recruit downstream capillaries, which will reduce diffusion distance and increase surface area for exchange. Working muscle increases oxygen utilization, increasing the concentration difference from the blood vessel to the tissue.

Mitochondrial dysfunction has been proposed to be both a cause [72] and a consequence [73] of insulin resistance, and may contribute to endothelial dysfunction [74]. If oxygen delivery is a component of mitochondrial health and biogenesis, it is possible that impaired perfusion may contribute to fiber type switching, where an oxidative fiber, which is typically highly vascularized and contains mitochondria, switches to a glycolytic fiber with less vascularity and mitochondria. As exercise can improve oxidative capacity, increase mitochondria content [75], and also increase muscle perfusion [31,32,34,45,76], the relationship between muscle perfusion, fiber type and mitochondrial function needs to be clarified.

The vascular component of exercise may well be linked to the reduction of diabetic complication such as retinopathy, peripheral neuropathy and nephropathy, as there is a vascular basis to many of these complications. The endothelium has been implicated in diabetic nephropathy [88], and the blood vessels formed in response to reduced perfusion in retinopathy show abnormal structure and function [89].

Care and Feeding of the Endocannabinoid System: A Systematic Review of Potential Clinical Interventions that Upregulate the Endocannabinoid System

Denne beskriver endocannabinoider(eCB) og hvordan man kan øke produksjonen av dem og reseptorene for dem. eCB er et kroppens viktigste naturlige smertstillende stoffer som kan produseres og påvirker alle nerver i kroppen. Spesielt viktig i hjernen, men også i det perifere nervesystem.

Massasje, kiropraktikk og hard trening (f.eks. runners high) utløser eCB i kroppen. Det gjør også omegabalanse (mer n-3), probiotica, NSAIDs, m.m. Også yoga, meditasjon, pust og andre stressreduserende påvirker eCB. Og trening, men kun om man gjør det jevnlig over tid.

Den nevner at langvarig stress reduserer eCB i kroppen siden det er koblet til kortisol. Men den nevner også at noen tilstander kan ha forhøyet eCB i kroppen, f.eks. overvekt.

Med høyt nivå av n-6 relativt til n-3 blir det en overvekt av AA (arakidonsyre) som produserer en overvekt av eCB, som dermed fører til en reduksjon av eCB reseptorer. Dette gjør at smertestillende medikamenter fungerer dårligere, og at det blir lettere kronisk smerte. Tilskudd av n-3 gjør at eCB reseptorene øker. Studiene er gjort på mus og innebærer 17 g/kg.

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0089566

The endocannabinoid (eCB) system consists of receptors, endogenous ligands, and ligand metabolic enzymes. Metaphorically the eCB system represents a microcosm of psychoneuroimmunology or mind-body medicine. Cannabinoid receptor 1 (CB1) is the most abundant G protein-coupled receptor expressed in the brain, with particularly dense expression in (rank order): the substantia nigra, globus pallidus, hippocampus, cerebral cortex, putamen, caudate, cerebellum, and amygdala [1]. CB1 is also expressed in non-neuronal cells, such as adipocytes and hepatocytes, and in musculoskeletal tissues. Cannabinoid receptor 2 (CB2) is principally associated with cells governing immune function, although it may also be expressed in the central nervous [2][3].

The eCB system’s salient homeostatic roles have been summarized as, “relax, eat, sleep, forget, and protect” [5]. It modulates embryological development, neural plasticity, neuroprotection, immunity and inflammation, apoptosis and carcinogenesis, pain and emotional memory, and most importantly from the viewpoint of recent drug development: hunger, feeding, and metabolism. Obese individuals seem to display an increased eCB tone, driving CB1activation in a chronic, feed-forward dysfunction (reviewed by [6]).

Other diseases are associated with suboptimal functioning of the eCB system. Russo [8]proposed that migraine, fibromyalgia, irritable bowel syndrome, and related conditions represent CEDS, “clinical endocannabinoid deficiency syndromes.” Fride [9] speculated that a dysfunctional eCB system in infants contributes to “failure to thrive” syndrome. Hill and Gorzalka [10] hypothesized that deficient eCB signaling could be involved in the pathogenesis of depressive illnesses. In human studies, eCB system deficiencies have been implicated in uncompensated schizophrenia [11], migraine [12], multiple sclerosis [13], Huntington’s [14],[15], uncompensated Parkinson’s [16], irritable bowel syndrome [17], uncompensated anorexia[18], and chronic motion sickness [19].

NSAIDs inhibit two cyclooxygenase (COX) enzymes, COX1 and COX2, and thereby block the conversion of arachidonic acid (AA) into inflammatory prostaglandins. Ibuprofen, ketorolac, and flurbiprofen also block the hydrolysis of AEA into arachidonic acid and ethanolamine [27]. SeeFigure 2. A binding site for some NSAIDs on FAAH has also been identified [28]. NSAID inhibition of COX2 blocks the metabolism of AEA and 2-AG into prostaglandin ethanolamides (PG-EAs) and prostaglandin glycerol esters (PG-GEs), respectively [29].

Combining NSAIDs with cannabinoids (either eCBs or exogenous cannabinoids) produces additive or synergistic effects. A sub-effective dose of WIN55,212-2 became fully antinociceptive following administration of indomethacin in rats [36].

In summary, preclinical studies indicate that some NSAIDs inhibit FAAH and enhance the activity of eCBs, phytocannabinoids, and synthetic cannabinoids. Combinational effects may be particularly relevant at peripheral sites, such as the peripheral terminals of nociceptors.

The distribution of glucocorticoid receptors (GRs) and CB1 overlap substantially in the central nervous system and other tissues, as do GRs and CB2 in immune cells. Dual activation of GRs and CBs may participate in glucocorticoid-mediated anti-inflammatory activity, immune suppression, insulin resistance, and acute psychoactive effects.

The acute administration of glucocorticoids may shift AA metabolism toward eCB synthesis in parts of the brain.

Chronic exposure to glucocorticoids downregulates the eCB system. Chronic corticosterone administration decreased CB1 densities in rat hippocampus [59] and mouse hippocampus and amygdala [61]. Chronic corticosterone administration in male rats led to visceral hyperalgesia in response to colorectal distension, accompanied by increased AEA, decreased CB1 expression, and increased TRPV1 expression in dorsal root ganglia. Co-treatment with the corticoid receptor antagonist RU-486 prevented these changes [62].

Polyunsaturated fatty acids (PUFAs) play fundamental roles in many cellular and multicellular processes, including inflammation, immunity, and neurotransmission. They must be obtained through diet, and a proper balance between omega-6 (ω-6) PUFAs and ω-3 PUFAs is essential. The typical Western diet contains a surfeit of ω-6s and a deficiency of ω-3s [130].

The inflammatory metabolites of AA are countered by dietary ω-3s. The two best-known ω-3s are eicosapentaenoic acid (EPA, 20:5ω-3) and docosahexaenoic acid (DHA, 22:6ω-3).

eCBs are derived from AA (see Figure 2). Several preclinical studies showed that dietary supplementation with AA increased serum levels of AEA and 2-AG, summarized in Table 1. Although we clearly need AA to biosynthesize eCBs, excessive levels of AA, administered chronically, may lead to excessive levels of eCBs. This in turn may lead to desensitized and downregulated CB1 and CB2 receptors.

Dietary supplementation with ω-3s predictably increased the concentration of EPA and/or DHA in tissues, cells, and plasma, and decreased the relative concentration of AA in tissues, cells, and plasma [132][133]. ω-3 supplementation also decreased AEA and 2-AG in tissues, cells, and plasma (Table 1).

Adequate levels of dietary ω-3s are required for proper eCB signaling. Mice supplemented with ω-3s, compared to mice on a control diet, expressed greater levels of CB1 and CB2 mRNA.

n summary, dietary ω-3s seem to act as homeostatic regulators of the eCB system. In obese rodents fed a high-AA diet, ω-3s significantly decrease eCBs, especially 2-AG, particularly in tissues that become dysregulated, such as adipose and liver tissues. Plasma eCB levels are reduced by krill oil also in obese humans. Little change in eCB levels are seen in normo-weight individuals not fed a high ω-6 diet, and dietary ω-3s are required for proper eCB signaling.

Human intestinal epithelial cells incubated with L. acidophilus produced more CB2 mRNA [145]. Feeding L. acidophilus to mice and rats increased the expression of CB2 mRNA in colonic epithelial cells. Lastly, mice fed L. acidophilus showed less pain behavior following colonic distension with butyrate than control mice, an effect reversed by the CB2 antagonist AM630[145].

Chronic or repeated stress results in a chronic elevation of endogenous corticosterone via the hypothalamic-pituitary-adrenocortical (HPA) axis. Chronic stress (repeated restraint) reduced AEA levels throughout the corticolimbic stress circuit in rodents [99][196][197].

In summary, chronic stress impairs the eCB system, via decreased levels of AEA and 2-AG. Changes in CB1 expression are more labile. Stress management may reverse the effects of chronic stress on eCB signaling, although few studies exploring this possibility have been performed to date. Clinical anecdotes suggests that stress-reduction techniques, such as meditation, yoga, and deep breathing exercises impart mild cannabimimetic effects [218].

Massage and osteopathic manipulation of asymptomatic participants increased serum AEA 168% over pretreatment levels; mean OEA levels decreased 27%, and no changes occurred in 2-AG. Participants receiving sham manipulation showed no changes [218].

Upregulation of the eCB system in obese humans seems to be driven by excessive production of eCBs in several peripheral tissues such as visceral adipose tissue, liver, pancreas, and skeletal muscle.

In summary, increased food intake, adiposity, and elevated levels of AEA and 2-AG apparently spiral in a feed-forward mechanism. Weight loss from caloric restriction breaks the cycle, possibly by reducing CB1 expression and reducing eCB levels.

Although both types of exercise regimens increased eCB ligand concentrations, only long-term-forced exercise led to sustained elevations of eCBs, and predictable CB1 downregulation.

In whole animals, however, caffeine’s effects are biphasic and vary by dosage and acute versus chronic administration. In humans, the acute administration of caffeine decreases headache pain, but exposure to chronic high doses, ≥300 mg/day, may exacerbate chronic pain [275].

The Mechanisms of Manual Therapy in the Treatment of Musculoskeletal Pain: A Comprehensive Model

Nevner det meste rundt behandling av muskel og skjelett problemer, både usikkerheter, manglende diagnostisk spesifisitet, dårlig forhold mellom forklaringsmodelle og realitet, og foreslår nevrosentriske forklaringsmodeller. Viser til at spesifikk behandling ikke har bedre effekt enn uspesifikk behandling. Og til at den mekaniske teknikken setter igang en kaskade av nevrologiske effekter som resulterer i en behandlingeffekt.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775050/

Abstract

Prior studies suggest manual therapy (MT) as effective in the treatment of musculoskeletal pain; however, the mechanisms through which MT exerts its effects are not established. In this paper we present a comprehensive model to direct future studies in MT. This model provides visualization of potential individual mechanisms of MT that the current literature suggests as pertinent and provides a framework for the consideration of the potential interaction between these individual mechanisms. Specifically, this model suggests that a mechanical force from MT initiates a cascade of neurophysiological responses from the peripheral and central nervous system which are then responsible for the clinical outcomes. This model provides clear direction so that future studies may provide appropriate methodology to account for multiple potential pertinent mechanisms.

Mechanical Stimulus 

First, only transient biomechanical effects are supported by studies which quantify motion (Colloca et al., 2006;Gal et al., 1997;Coppieters & Butler, 2007;Coppieters & Alshami, 2007) but not a lasting positional change (Tullberg et al., 1998;Hsieh et al., 2002). Second, biomechanical assessment is not reliable. Palpation for position and movement faults has demonstrated poor reliability (Seffinger et al., 2004;Troyanovich et al., 1998) suggesting an inability to accurately determine a specific area requiring MT.  Third, MT techniques lack precision as nerve biased techniques are not specific to a single nerve (Kleinrensink et al., 2000) and joint biased technique forces are dissipated over a large area (Herzog et al., 2001;Ross et al., 2004).

Finally, studies have reported improvements in signs and symptoms away from the site of application such as treating cervical pain with MT directed to the thoracic spine (Cleland et al., 2005;Cleland et al., 2007) and lateral epicondylitis with MT directed to the cervical spine (Vicenzino et al., 1996).

Subsequently, we suggest, that as illustrated by the model, a mechanical force is necessary to initiate a chain of neurophysiological responses which produce the outcomes associated with MT. 

Neurophysiological Mechanism 

Studies have measured associated responses of hypoalgesia and sympathetic activity following MT to suggest a mechanism of action mediated by the periaquaductal gray (Wright, 1995) and lessening of temporal summation following MT to suggest a mechanism mediated by the dorsal horn of the spinal cord (George et al., 2006) The model makes use of directly measurable associated responses to imply specific neurophysiological mechanisms when direct observations are not possible. The model categorizes neurophysiological mechanisms as those likely originating from a peripheral mechanism, spinal cord mechanisms, and/or supraspinal mechanisms.

Peripheral mechanism 

Musculoskeletal injuries induce an inflammatory response in the periphery which initiates the healing process and influences pain processing. Inflammatory mediators and peripheral nociceptors interact in response to injury and MT may directly affect this process. For example, (Teodorczyk-Injeyan et al., 2006) observed a significant reduction of blood and serum level cytokines in individuals receiving joint biased MT which was not observed in those receiving sham MT or in a control group. Additionally, changes of blood levels of β-endorphin, anandamide, N-palmitoylethanolamide, serotonin, (Degenhardt et al., 2007) and endogenous cannabinoids (McPartland et al., 2005) have been observed following MT. Finally, soft tissue biased MT has been shown to alter acute inflammation in response to exercise (Smith et al., 1994) and substance P levels in individuals with fibromyalgia (Field et al., 2002). Collectively, these studies suggest a potential mechanism of action of MT on musculoskeletal pain mediated by the peripheral nervous system for which mechanistic studies may wish to account. 

Spinal mechanisms 

MT may exert an effect on the spinal cord. For example, MT has been suggested to act as a counter irritant to modulate pain (Boal & Gillette, 2004) and joint biased MT is speculated to “bombard the central nervous system with sensory input from the muscle proprioceptors (Pickar & Wheeler, 2001).”Subsequently, a spinal cord mediated mechanism of MT must be considered and is accounted for in the model. Direct evidence for such an effect comes from a study (Malisza et al., 2003b) in which joint biased MT was applied to the lower extremity of rats following capsaicin injection. A spinal cord response was quantified by functional MRI during light touch to the hind paw. A trend was noted towards decreased activation of the dorsal horn of the spinal cord following the MT. The model uses associated neuromuscular responses following MT to provide indirect evidence for a spinal cord mediated mechanism. For example, MT is associated with hypoalgesia (George et al., 2006;Mohammadian et al., 2004;Vicenzino et al., 2001), afferent discharge (Colloca et al., 2000;Colloca et al., 2003), motoneuron pool activity (Bulbulian et al., 2002;Dishman & Burke, 2003), and changes in muscle activity (Herzog et al., 1999;Symons et al., 2000) all of which may indirectly implicate a spinal cord mediated effect.

Supraspinal mechanisms 

Finally, the pain literature suggests the influence of specific supraspinal structures in response to pain. Structures such as the anterior cingular cortex (ACC), amygdala, periaqueductal gray (PAG), and rostral ventromedial medulla (RVM) are considered instrumental in the pain experience.(Peyron et al., 2000;Vogt et al., 1996;Derbyshire et al., 1997;Iadarola et al., 1998;Hsieh et al., 1995;Oshiro et al., 2007;Moulton et al., 2005;Staud et al., 2007;Bee & Dickenson, 2007;Guo et al., 2006). Subsequently, the model considers potential supraspinal mechanisms of MT. Direct support for a supraspinal mechanism of action of MT comes from (Malisza et al., 2003a) who applied joint biased MT to the lower extremity of rats following capsaicin injection. Functional MRI of the supraspinal region quantified the response of the hind paw to light touch following the injection. A trend was noted towards decreased activation of the supraspinal regions responsible for central pain processing. The model accounts for direct measures of supraspinal activity along with associated responses such as autonomic responses (Moulson & Watson, 2006;Sterling et al., 2001;Vicenzino et al., 1998) (Delaney et al., 2002;Zhang et al., 2006), and opiod responses (Vernon et al., 1986) (Kaada & Torsteinbo, 1989) to indirectly imply a supraspinal mechanism. Additionally, variables such as placebo, expectation, and psychosocial factors may be pertinent in the mechanisms of MT (Ernst, 2000;Kaptchuk, 2002). For example expectation for the effectiveness of MT is associated with functional outcomes (Kalauokalani et al., 2001) and a recent systematic review of the literature has noted that joint biased MT is associated with improved psychological outcomes (Williams et al., 2007). For this paper we categorize such factors as neurophysiological effects related to supraspinal descending inhibition due to associated changes in the opioid system (Sauro & Greenberg, 2005), dopamine production (Fuente-Fernandez et al., 2006), and central nervous system (Petrovic et al., 2002;Wager et al., 2004;Matre et al., 2006) which have been observed in studies unrelated to MT.

Figure 3 Pathway considering both a spinal cord and supraspinal mediated effect from Bialosky et al (2008)

Vagal tone and the inflammatory reflex

En studie som beskriver mekanismene bak hvordan vagus nerven henger sammen med immunsystemet. Med en sterk vagusnerve (høy HRV) kan betennelser dempes.

http://www.ccjm.org/content/76/Suppl_2/S23.long

Inhibition of sympathoexcitatory circuits is influenced by cerebral structures and mediated via vagal mechanisms. Studies of pharmacologic blockade of the prefrontal cortex together with neuroimaging studies support the role of the right hemisphere in parasympathetic control of the heart via its connection with the right vagus nerve. Neural mechanisms also regulate inflammation; vagus nerve activity inhibits macrophage activation and the synthesis of tumor necrosis factor in the reticuloendothelial system through the release of acetylcholine. Data suggest an association between heart rate variability and inflammation that may support the concept of a cholinergic anti-inflammatory pathway.

The neurovisceral integration model of cardiac vagal tone integrates autonomic, attentional, and affective systems into a functional and structural network. This neural network can be indexed by heart rate variability (HRV). High HRV is associated with greater prefrontal inhibitory tone. A lack of inhibition leads to undifferentiated threat responses to environmental challenges.

The cholinergic anti-inflammatory pathway

Acetylcholine and parasympathetic tone inhibit proinflammatory cytokines such as interleukin (IL)-6. These proinflammatory cytokines are under tonic inhibitory control via the vagus nerve, and this function may have important implications for health and disease.5

The cholinergic anti-inflammatory pathway is associated with efferent activity in the vagus nerve, leading to acetylcholine release in the reticuloendothelial system that includes the liver, heart, spleen, and gastrointestinal tract. Acetylcholine interacts with the alpha-7 nicotinic receptor on tissue macrophages to inhibit the release of proinflammatory cytokines, but not anti-inflammatory cytokines such as IL-10.

Approximately 80% of the fibers of the vagus nerve are sensory; ie, they sense the presence of proinflammatory cytokines and convey the signal to the brain. Efferent vagus nerve activity leads to the release of acetylcholine, which inhibits tumor necrosis factor (TNF)-alpha on the macrophages. Cytokine regulation also involves the sympathetic nervous system and the endocrine system (the hypothalamic-pituitary axis).

Inverse relationship between HRV and CRP

In a study of 613 airplane factory workers in southern Germany, vagally mediated HRV was inversely related to high-sensitivity CRP in men and premenopausal women, even after controlling for urinary norepinephrine as an index of sympathetic activity.6

Inverse relationship between HRV and fibrinogen

In a related report from the same study, vagal modulation of fibrinogen was investigated.7 Fibrinogen is a large glycoprotein that is synthesized by the liver. Plasma fibrinogen is a measure of systemic inflammation crucially involved in atherosclerosis.

CONCLUSION

The brain and the heart are intimately connected. Both epidemiologic and experimental data suggest an association between HRV and inflammation, including similar neural mechanisms. Evidence of an association between HRV and inflammation supports the concept of a cholinergic anti-inflammatory pathway.

Neurobiologic basis of craving for carbohydrates.

Denne studen nevner 5 systemer som bidrar til at vi føler behov for karbohydrater. Den viktigste er at serotonin øker i hjernen, noe som over tid kan gi en avhengighet. De nevner også at evnen til å skille sult fra andre interne følelser kan bli dårligere, og at det gir behov for mat når andre ting i kropp og sinn er i ulage.

http://www.ncbi.nlm.nih.gov/pubmed/24139726

Serotonergic:  Increased brain serotonin improves mood. Brain serotonin levels depend on the availability of its Trp precursor. Dietary carbohydrates increase the passage of Trp through the blood–brain barrier, unlike proteins, which alter LNAA.  Faced with anxiety, an individual eats carbohydrates, which increase brain serotonin, thus improving mood.

Palatability and hedonic response: The pleasurable experience of eating food with high palatability immediately improves mood. This occurs in individuals with greater genetic sensitivity to sweet taste through the activation of the endogenous opioid system. Faced with anxiety, an individual eats a food with high palatability, activating the hedonic mechanism, which improvesmood.

Motivational system:  Carbohydrates act in the motivational system in the same manner as abused substances. This increases dopamine and endogenous opioids, which are associated with a known pleasurable effect, improving mood. If this behavior is repeated over time, structural changes in the brain are produced that generate dependence on highly palatable foods.

Stress response: Faced with anxiety associated with stress, the HPA axis activates. Highly palatable foods activate the motivational system and reduce the HPA axis, thus regulating the stress system. Therefore, when faced with anxiety, highly palatable food produces a hedonic reward as well as reducing the state of anxiety.

Gene–environment:  Eating is a coping tool to relieve negative emotions. The behavior is learned through inadequate parenting and environment. It also stems from an inability to distinguish hunger from other aversive internal states. There is greater susceptibility in carriers of the A1 allele of the DRD2 dopamine receptor and carriers of the short allele of the serotonin transporter gene.

One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?

Alt om hvordan melatonin virker som en antioksidant. Jo større ROS utfordring vi har, jo mer spiser det av melatoninlagrene våre. Når vi får mindre ROS, feks gjennom kostholdsendringer og stressreduksjon, så økes melatonin igjen.

http://www.ncbi.nlm.nih.gov/pubmed/17198536

Melatonin is a highly conserved molecule. Its presence can be traced back to ancient photosynthetic prokaryotes. A primitive and primary function of melatonin is that it acts as a receptor-independent free radical scavenger and a broad-spectrum antioxidant. The receptor-dependent functions of melatonin were subsequently acquired during evolution. In the current review, we focus on melatonin metabolism which includes the synthetic rate-limiting enzymes, synthetic sites, potential regulatory mechanisms, bioavailability in humans, mechanisms of breakdown and functions of its metabolites. Recent evidence indicates that the original melatonin metabolite may be N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) rather than its commonly measured urinary excretory product 6-hydroxymelatonin sulfate. Numerous pathways for AFMK formation have been identified both in vitro and in vivo. These include enzymatic and pseudo-enzymatic pathways, interactions with reactive oxygen species (ROS)/reactive nitrogen species (RNS) and with ultraviolet irradiation. AFMK is present in mammals including humans, and is the only detectable melatonin metabolite in unicellular organisms and metazoans. 6-hydroxymelatonin sulfate has not been observed in these low evolutionary-ranked organisms. This implies that AFMK evolved earlier in evolution than 6-hydroxymelatonin sulfate as a melatonin metabolite. Via the AFMK pathway, a single melatonin molecule is reported to scavenge up to 10 ROS/RNS. That the free radical scavenging capacity of melatonin extends to its secondary, tertiary and quaternary metabolites is now documented. It appears that melatonin’s interaction with ROS/RNS is a prolonged process that involves many of its derivatives. The process by which melatonin and its metabolites successively scavenge ROS/RNS is referred as the free radical scavenging cascade. This cascade reaction is a novel property of melatonin and explains how it differs from other conventional antioxidants. This cascade reaction makes melatonin highly effective, even at low concentrations, in protecting organisms from oxidative stress. In accordance with its protective function, substantial amounts of melatonin are found in tissues and organs which are frequently exposed to the hostile environmental insults such as the gut and skin or organs which have high oxygen consumption such as the brain. In addition, melatonin production may be upregulated by low intensity stressors such as dietary restriction in rats and exercise in humans.

Intensive oxidative stress results in a rapid drop of circulating melatonin levels. This melatonin decline is not related to its reduced synthesis but to its rapid consumption, i.e. circulating melatonin is rapidly metabolized by interaction with ROS/RNS induced by stress. Rapid melatonin consumption during elevated stress may serve as a protective mechanism of organisms in which melatonin is used as a first-line defensive molecule against oxidative damage. The oxidative status of organisms modifies melatonin metabolism. It has been reported that the higher the oxidative state, the more AFMK is produced. The ratio of AFMK and another melatonin metabolite, cyclic 3-hydroxymelatonin, may serve as an indicator of the level of oxidative stress in organisms.

Moderate hypercapnia-induced anesthetic effects and endogenous opioids.

Denne nevner hvordan hyperkapni (økt CO2) kan virke smertedempende ved at det demper nocieptive aktivering ved hjelp av opioder. Men studien benyttet seg av ganske høy hypercapni, 87mmHg, noe som sannsynligvis er umulig å få til med pustetrening, hvor vi øker det til 45-50mmHg.

http://www.ncbi.nlm.nih.gov/pubmed/16701947

Abstract

The purpose of this report is to explore the mechanisms of hypercapnia-induced antinociception. We carried out three experiments, the first to confirm whether moderate hypercapnia induces anesthetic effects, the second to determine whether naloxone reverses the anesthetic effects, and the third to evaluate whether beta-endorphin is related to the anesthetic effects. In a pre-test, we determined the optimal CO(2) concentration in a chamber which would cause moderate hypercapnia in rats. Eighteen rats were divided into control, hypercapnia, and hypercapnia plus naloxone groups in experiment 1. The naloxone group rats were injected with naloxone (10 mg/kg) intraperitoneally before gas inhalation. After 60 min gas inhalation, 10% formalin was injected into the left rear paw of all rats, and nociceptive behaviors were observed for 1 h. In experiment 2, 11 rats were divided into control and hypercapnia groups. The brain was removed and fixed under pentobarbital anesthesia. Sections were immunostained for c-Fos and beta-endorphin (ACTH) with the ABC method. All neurons double-labeled for c-Fos and beta-endorphin (ACTH) in the arcuate nucleus were counted by blinded investigators. Moderate hypercapnia (PaCO(2) 83+/-7 mmHg) reduced nociceptive behavior in the formalin test and naloxone pre-treatment attenuated this phenomenon. However, beta-endorphin-producing neurons were not activated by CO(2) inhalation. Endogenous opioids are related to moderate, hypercapnia-induced anesthetic effects, but, beta-endorphin-producing neurons in the hypothalamus were not activated by the CO(2) inhalation stress.

The nutriceutical bovine colostrum truncates the increase in gut permeability caused by heavy exercise in athletes

Studie som nevner at hard trening gir lekk tarm, og at Colostrum (hoppemelk) lukker tarmen. Dette kan forklare hvorfor så mange vektløftere og toppidrettsutøver har problemer med tarm og immunsystem. I studien brukte de 20g colostrum daglig, som er ganske mye.

http://ajpgi.physiology.org/content/300/3/G477

Heavy exercise causes gut symptoms and, in extreme cases, “heat stroke” partially due to increased intestinal permeability of luminal toxins. We examined bovine colostrum, a natural source of growth factors, as a potential moderator of such effects. Twelve volunteers completed a double-blind, placebo-controlled, crossover protocol (14 days colostrum/placebo) prior to standardized exercise. Gut permeability utilized 5 h urinary lactulose-to-rhamnose ratios. In vitro studies (T84, HT29, NCM460 human colon cell lines) examined colostrum effects on temperature-induced apoptosis (active caspase-3 and 9, Baxα, Bcl-2), heat shock protein 70 (HSP70) expression and epithelial electrical resistance. In both study arms, exercise increased blood lactate, heart rate, core temperature (mean 1.4°C rise) by similar amounts. Gut hormone profiles were similar in both arms although GLP-1 levels rose following exercise in the placebo but not the colostrum arm (P = 0.026). Intestinal permeability in the placebo arm increased 2.5-fold following exercise (0.38 ± 0.012 baseline, to 0.92 ± 0.014, P < 0.01), whereas colostrum truncated rise by 80% (0.38 ± 0.012 baseline to 0.49 ± 0.017) following exercise. In vitro apoptosis increased by 47–65% in response to increasing temperature by 2°C. This effect was truncated by 60% if colostrum was present (all P < 0.01). Similar results were obtained examining epithelial resistance (colostrum truncated temperature-induced fall in resistance by 64%, P < 0.01). Colostrum increased HSP70 expression at both 37 and 39°C (P < 0.001) and was truncated by addition of an EGF receptor-neutralizing antibody. Temperature-induced increase in Baxα and reduction in Bcl-2 was partially reversed by presence of colostrum. Colostrum may have value in enhancing athletic performance and preventing heat stroke.

SEVERAL STRESSES AFFECT the integrity of the intestinal barrier. These include prolonged strenuous exercise (10), heat stress (11), and drugs such as nonsteroidal anti-inflammatory agents. Loss of intestinal barrier integrity leading to increased intestinal permeability may result in passage of luminal endotoxins into the circulation. This, in turn, results in an inflammatory cascade, exacerbating the loss of barrier function and, in severe cases, resulting in severe systemic effects.

Gastrointestinal symptoms including cramps, diarrhea, nausea, and bleeding are commonly reported by long-distance runners (16). These symptoms are likely to be due to a combination of reduced splanchnic blood flow, hormonal changes, altered gut permeability, and increased body temperature.

Colostrum is the first milk produced after birth and is particularly rich in immunoglobulins, antimicrobial peptides (e.g., lactoferrin, lactoperoxidase), and other bioactive molecules including growth factors (20).

We have previously shown, using a combination of in vitro and in vivo studies, that a commercially available defatted bovine colostral preparation can reduce NSAID-induced upper intestinal gut injury in rats, mice, and humans (19, 21).

The total protein content of the colostrum was 80%. The concentrations of the various growth factors present in the colostrum preparation are incompletely defined but include IGF-I at 213 ng/g, TGF-β1 at 113 ng/g, and TGF-β2 at 441 ng/g.

In a double-blind crossover design, subjects received oral supplementation with 20 g/day bovine colostrum or the isoenergetic and isomacronutrient placebo.