Behavioural modification of the cholinergic anti-inflammatory response to C-reactive protein in patients with hypertension

Denne beskriver hvordan regulering av pusten kan påvirke vagus nerven til å dempe betennelser og redusere CRP (en betennelsesmarkør) i blodet.

Objectives.  A central hypothesis of the cholinergic anti-inflammatory reflex model is that innate immune activity is inhibited by the efferent vagus. We evaluated whether changes in markers of tonic or reflex vagal heart rate modulation following behavioural intervention were associated inversely with changes in high-sensitivity C-reactive protein (hsCRP) or interleukin-6 (IL-6).

Design.  Subjects diagnosed with hypertension (= 45, age 35–64 years, 53% women) were randomized to an 8-week protocol of behavioural neurocardiac training (with heart rate variability biofeedback) or autogenic relaxation. Assessments before and after intervention included pro-inflammatory factors (hsCRP, IL-6), markers of vagal heart rate modulation [RR high-frequency (HF) power within 0.15–0.40 Hz, baroreflex sensitivity and RR interval], conventional measures of lipoprotein cholesterol and 24-h ambulatory systolic and diastolic blood pressure.

Results.  Changes in hsCRP and IL-6 were not associated with changes in lipoprotein cholesterol or blood pressure. After adjusting for anti-inflammatory drugs and confounding factors, changes in hsCRP related inversely to changes in HF power (β =−0.25±0.1, P = 0.02), baroreflex sensitivity (β = −0.33±0.7, P = 0.04) and RR interval (β = −0.001 ± 0.0004, P = 0.02). Statistically significant relationships were not observed for IL-6.

Conclusions.  Changes in hsCRP were consistent with the inhibitory effect of increased vagal efferent activity on pro-inflammatory factors predicted by the cholinergic anti-inflammatory reflex model. Clinical trials for patients with cardiovascular dysfunction are warranted to assess whether behavioural interventions can contribute independently to the chronic regulation of inflammatory activity and to improved clinical outcomes.

Chronic low-grade inflammation contributes to the development of experimental and clinical hypertension [1–3], and it increases the risk for myocardial infarction, stroke and sudden cardiac death [4]. C-reactive protein (CRP) is an established index of systemic inflammation. It is produced chiefly by hepatocytes under the regulation of a cascade of pro-inflammatory cytokines [tumour necrosis factor-α (TNF-α), interleukin-1ß [IL-1ß] and IL-6] that are expressed in response to conditions that include vascular injury and infection. In addition, CRP is produced by human coronary artery smooth muscle cells following exposure to pro-inflammatory cytokines [5], which suggests that it may contribute independently to endothelial dysfunction and atherogenesis [6].

Clinical trials that have attempted to modify vagal efferent activity by means of aerobic exercise [17, 18], resistance exercise [19] or device-guided vagal nerve stimulation [20–22] have yet to demonstrate consequent reduction in pro-inflammatory activity that is independent of confounding factors such as anti-inflammatory medications.

Subjects received four weekly and two biweekly 1-h sessions of behavioural neurocardiac training or autogenic relaxation, as described previously [23]. Home practice sessions complemented the laboratory-based training. All sessions began with a 10-min review of cognitive-behavioural guidelines for managing daily stress [25].

At the completion of each task, subjects were trained to cognitively disengage from negative or aroused affect and to focus attention on slowing respiration (within their comfort zone) to 10-s cycles (6 breaths min−1). During each countering exercise, subjects were guided by the use of biofeedback to increase RR spectral power at approximately 0.1 Hz, as shown on a biofeedback display of the RR power spectrum (0.003–0.5 Hz) and breaths min−1.

The major finding of this study is that following an 8-week protocol of behavioural neurocardiac training or autogenic relaxation amongst patients with hypertension, change in hsCRP was associated independently and inversely with changes in tonic and reflex vagal heart rate modulation as measured by RR high-frequency power (ms2 per Hz), baroreflex sensitivity (ms per mmHg) and lengthening of the RR interval (ms). A statistical trend in the data suggested a similar inverse association between changes in IL-6 and RR high-frequency power.

A central hypothesis of the cholinergic anti-inflammatory reflex model is that the innate immune response is regulated, in part, by rapid and localized efferent activity of the vagus nerve. Previous reviews have identified the functional anatomy and neural mechanisms of this model [10, 29, 30]. In brief, efferent fibres of the vagus nerve comprise a neural anti-inflammatory pathway that culminates in the release of acetylcholine in proximate sites where pro-inflammatory factors have been expressed. Acetylcholine has been shown to bind to subunit α7 of nicotinic acetylcholine receptors on cytokine-producing immune cells [30]. This inhibits the activation of NF-κB and the subsequent expression of a pro-inflammatory cascade that includes TNF-α, IL-6 and CRP [10].

To our knowledge, the present proof of principle study involving hypertensive patients provides the most direct evaluation of whether augmentation of tonic or reflex vagal heart rate modulation, in this instance by a behavioural intervention, attenuates independently pro-inflammatory activity as assessed by hsCRP and IL-6. It is noteworthy that the present findings were observed following only modest changes in markers of vagal HR modulation. Previous behavioural trials of heart rate variability biofeedback or relaxation [32–34] have reported a small but statistically significant increase in vagal HR modulation. Similarly, behavioural training is associated with a modest, but statistically significant decrease in proinflammatory factors, including hsCRP and IL-6 [35], although heart rate variability biofeedback failed to reduce other inflammatory factors following experimental administration of an endotoxin (lipopolysaccharide) [36].

In sum, the present findings support the model of a cholinergic anti-inflammatory reflex when pro-inflammatory activity is measured by hsCRP. Clinical trial evidence has demonstrated that behavioural interventions can significantly augment vagal heart rate modulation or cardiovagal baroreflex gain through the use of relaxation training and biofeedback [32–34].

Legg igjen en kommentar

Fyll inn i feltene under, eller klikk på et ikon for å logge inn:

Du kommenterer med bruk av din konto. Logg ut /  Endre )


Du kommenterer med bruk av din Twitter konto. Logg ut /  Endre )


Du kommenterer med bruk av din Facebook konto. Logg ut /  Endre )

Kobler til %s