Ukjent sin avatar

You said biomechanics? Its «fuzzy» mechanics!!

Dekonstruksjon av biomekanikk paradigmet og hvordan det ikke passer inn i vår organisme.

http://www.maitrise-orthop.com/corpusmaitri/orthopaedic/mo64_fuzzy_mechanics/index.shtml

The acquired reflex to think according to Mechanics must absolutely be lost when dealing with Biomechanics. That is the reason why with some exceptions, engineers in Industrial Mechanics may sometimes be poor biomechanics. In fact, Biomechanics deals with a four dimensional space, where «the time dimension» does not have the same value as that involved in Industrial Mechanics.

Ukjent sin avatar

What nervous systems do: early evolution , inputoutput, and the skin brain thesi s

Viktig studie som hinter til den virkelige oppgaven til nervesystemet, som ikke er sende info inn til eller ut fra hjernen… Om vitenskapens forstelse av nervesystemet opp igjennom tidene og hvordan alt vi trodde om nervesystemet er feil.
http://adb.sagepub.com/content/21/2/67.abstract
Hele studien på dropbox: https://dl.dropboxusercontent.com/u/17457302/Forskning%20mappe%20for%20terapi/Keizer%202013%20What%20nervous%20systems%20do-%20early%20evolution%2C%20input%C2%96output%2C%20and%20the%20skin%20brain%20thesis.pdf

We hold that the fundamental problem here was not so much to act intelligentlya problem that had already been solved in various ways without a nervous system (Section 3.3)but to act as a single multicellular unit.

Nervous systems arose as a source and coordinator of patterned activity across extensive areas of contractile tissue in a way that was only loosely constrained by sensor activity.

In this view, the central direction of nervous system connections runs transverseat right anglesto the through-conducting stream that runs between sensors and effectors: early nervous systems evolved as connec- tions across a contractile tissue and in close connection to the animal epithelium or skin.

Adopting the phrase skin brain introduced by Holland (2003), we will refer to this idea as the skin brain thesis, or SBT.

Although the inputoutput view is deeply entrenched, there are issues involving nervous system functioning that are highly puzzling or awkward when the input output view is taken as a fundamental account of ner- vous systems.

The current inputoutput interpretation of nervous sys- tems is closely linked to a computational information- processing interpretation. This linkage is intrinsic to the classic neuron doctrine, according to which neurons are individual entities that receive and send electrical signals to one another through synapses in an all-or-none fashion that is basically similar to electrical switches. Consistent with the neuron doctrines one-way flow of information, nervous systems could be interpreted as electronic circui- try, which may be far more complex than artificial circui- try, but not intrinsically different.

The problem with this input-output interpretation is that the neuron doctrine on which it is based has been seriously undermined (e.g., Bullock et al., 2005; Guillery, 2007; Kruger & Otis, 2007) since it was first advanced by Ramon y Cajal in the late 19th century. Famously, Cajal formulated what came to be called the neuron doctrine explicitly in opposition to the then-current idea that ner- vous systems are reticular organizations of nerve cells directly connected to one another, through which electri- cal activity flows diffusely in all directions (Guillery, 2007; Kruger & Otis, 2007).

The neu- ron doctrine can not plausibly explain the diversity of neuromodulatory substances, such as amines and neu- ropeptides, that remodel neuron behavior and circuitry within minutes and hours instead of the standard milli- second time scale (Bullock et al., 2005). Many of these neuromodulatory molecules are not recent evolutionary developments but have a deep genomic history. More recently, immune system elements, such as cytokines, have been shown to play critical roles in modulating neural plasticity under normal as well as challenged conditions (McAfoose and Baune, 2009; Yirmiya and Goshen, 2011), and these associations are also very old (Maier and Watkins, 1998). The neuron doctrine cannot explain these associations either. Moreover, in many neurons, action potentials can travel backward from the axon and cell body to the dendrites.

Clue 2: The detailed operation of neurons and nervous sys- tems is much more complex and diverse than can be readily accounted for by the inputoutput view.

Clue 3: The reflex arc organization may very well be a sec- ondary optimization of nervous systems.

The inputoutput interpretation stresses that nervous systems function as information processing devices. However, in recent years serious claims concerning the complexity, and even cognitive, nature of the behavior of single-celled organisms have come to the fore. For example, John Allman (1999) discusses how the most fundamental features of brains such as sensory integra- tion, memory, decision-making, and the control of behavior, can already be found in simple organisms such as bacteria (pp. 56).

While this is presumably true of complex ner- vous systems, the point does not seem to apply to basic forms. When one systematically compares organisms with basic nervous systems, they do not show more complex behavior than creatures without a nervous sys- tem.

According to Jennings, the possession of a nervous system brings with it no observable essential changes in the nature of behavior. We have found no important additional features in the behavior when the nervous system is added (p. 263).

Clue 4: Basic nervous systems do not lead to more complex behavior than is often present in organisms without a nervous system.

Clue 5: Many of the biomolecular characteristics of neurons are already present in non-neural precursor contexts.

Clue 6: Understanding what nervous systems do is a question that requires an answer at the level of the whole animal.

Clue 7: The main animal effector consists of muscle tissue that requires spatiotemporal coordination.

Clue 8: Coordinating extensive areas of muscle tissue requires endogenous activity.

Nowadays, the picture has changed again. While Mackies scenario for the origins of nervous systems is still influential (e.g., Arendt, 2008; Je kely, 2011; Miller, 2009), it faces important difficulties. A key problem is that nervous systems are found more widely among animal phyla and classes than electri- cally coupled conductive epithelia. Notably, while all four major cnidarian classes have a nervous system, there is substantial evidence that only the Hydrozoa have functional gap junctions (Mackie, Anderson, & Singla, 1984; Satterlie, 2011).

Clue 9: Chemical transmission between adjacent cells can have provided the basis for primitive conductive epithelia that formed a half-way station to nerve nets.

Clue 10: Chemically transmitting conductive (myo)epithelia can have provided a basic form of muscle coordination.

Clue 11: Specialized axodendritic connections can have sub- sequently evolved to broaden the existing possibilities for muscle coordination.

Under this interpretation, the core business of such nerve nets consisted of organizing and integrating activity across contractile effector surfaces (e.g., mus- cle) spread out beneath an external epithelium. Such a task would involve parallel organization and coordina- tion requiring signaling across a surface rather than a through-conducting, sequential organization based on a set of pre-existing sensors and effectors. No stimulus can specify by itself the behaviorally relevant contrac- tion patterns across such a surface. Patterns that workthat is, patterns that lead to movements that are appropriate under the circumstancesare a func- tion of the particular effector surface that is present in the animals rather than of any triggering stimulus. Also, based on what we know about organisms today, movement is likely to have been self-induced, while external stimuli acted rather as modulating factors on continuous effector activity.

While modern nervous sys- tems have various other functions, it is evident that enabling an organism to move and manipulate its envi- ronment in specific ways is the prime reason for the huge investment in these metabolically expensive organs (Allman, 1999).

Such cellular con- tractions must be coordinated with respect to one another, however. Uncoordinated contractions by indi- vidual cells would not result in whole-body motility. This, we believe, is where nervous systems come in. Nerve nets are intrinsically tied up with muscle surfaces.

The SBT can now be formulated as the proposition that early nerve nets evolved when some conducting cellseither within or connected to the myoepithelium evolved elongated processes and synaptic connections in a way that modified and enhanced the patterning capabil- ities of a pre-existing myoepithelium. Rather than pro- viding specific connections from sensors to effectors, the proper function of such nerve nets was to control, modify and extend the available self-organized pattern- ing across a Pantin surface. The key adaptation pro- vided by early nerve nets was the way in which they added to the generic self-organizing properties of pre- existing epithelial and muscular tissues.

To summarize, the SBT claims that nerve nets origi- nated as a new mechanism by which Pantin surfaces could be more intricately and flexibly patterned to accommodate efficient motility at larger bodily scales. At a fundamental level nerve nets are fitted to spatial patterning and to accommodating spatially patterned feedback.

The SBT offers a genuinely new conceptual approach for understanding nervous systems at a whole systems level. Starting with the most primitive neural organiza- tionsproto-neural myoepithelia and nerve netswe argue that both are characterized by connections trans- verse to the standard sensor-effector direction and evolved their characteristics to bind the many cellular units of muscle sheets together into a unitary system. Nervous systems are in this view not organized aroundor rather betweensensors and effectors. They are themselves a precondition for both extended con- tractile effectors as well as multicellular sensory arrays.

We have stressed from the beginning that the SBT provides a conceptual reinterpretation of nervous system functioning.

The skin brain pro- posal casts animal behavior as a dynamical phenotype, necessarily tied to the species or class of animals under consideration. Sherrington once observed that posture follows movement like a shadow (Stuart, 2005). We would like to stress that dynamically changing body pos- ture is a precondition for all task-oriented animal beha- vior. Animal behavior is a part of animal organization.

Ukjent sin avatar

Somatosensory Demands Modulate Muscular Beta Oscillations, Independent of Motor Demands

Om at berørelse og bevegelse er det samme i hjernen og helt ned på muskelnivå. Og at berørelse demper signaler fra musklene i hjernen. Trenger hele denne studien.

http://www.jneurosci.org/content/33/26/10849.short?rss=1

Specifically, somatosensory demands suppress the degree to which not only cortical activity but also muscular activity oscillates in the beta band. This suppression of muscular beta oscillations by perceptual demands is specific to demands in the somatosensory modality and occurs independent of movement preparation and execution: it occurs even when no movement is required at all.

This places touch perception as an important computation within this widely distributed somatomotor beta network and suggests that, at least in healthy subjects, somatosensation and action should not be considered as separable processes, not even at the level of the muscles.

Ukjent sin avatar

Effects of Respiratory-Muscle Exercise on Spinal Curvature

Nevner hvor mye diafragma og pustemuskler har å si for kontroll og stabilitet i bevegelse. Bla. kjernemuskulatur og intraabdominalt trykk.

http://posturalrestoration.com/media/pdfs/Effects_of_Respiratory-Muscle_Exercise_on_Spinal_Curvature.pdf

Respiratory-muscle exercises are used not only in the rehabilitation of patients with respiratory disease but also in endurance training for ath- letes. Respiration involves the back and abdominal muscles. These muscles are 1 of the elements responsible for posture control, which is integral to injury prevention and physical performance.

The results suggest that respiratory-muscle exercise straightened the spine, leading to good posture control, pos- sibly because of contraction of abdominal muscles.

In competitive sports, the spine of young athletes can have excess thoracic kyphosis and lumbar lordosis because it is the conduit for transferring mechanical power between the upper and lower extremities during rapid and forceful movements.1

Under the influence of these forces, athletes have much degeneration of the intervertebral disks,2 and the loss of disk height with denaturation is associated with increased spine curva- ture.1 Thoracic kyphosis and lumbar lordosis contribute to back pain.3

The loss or increase of lumbar lordosis correlates well with the incidence of chronic low back pain.4,5 In addition, thoracic kyphosis leads to shoulder pain.3

Spinal-alignment control is essential for preventing various injuries. Align- ment depends on muscle strength and balance, muscle tightness, and skeletal structure.9

The trunk muscles are grouped into 2 categories: global and local stabilizers.10 The global stabilizers com- prise superficial muscles such as the rectus abdominis and longissimus muscles, and the local stabilizers are deep muscles, for example, the transverse abdominal and multifidus muscles.10 Cholewicki et al11 reported that thecontraction of local stabilizers is indispensable to trunk stability; that is, the trunk becomes unstable in the case of contraction of global stabilizers alone. The unstable trunk increases stress to the ligament and bone that control the end of motion and cause pain such as back pain.12

Respiratory-muscle exercises are used in the reha- bilitation of chronic obstructive pulmonary disease18 and endurance exercise for athletes.19 The muscles comprise the diaphragm, intercostal muscles, and the accessory muscles of respiration.20 The accessory muscles of res- piration consist of several of the trunk muscles, includ- ing local stabilizers. Therefore, this study focused on exercises for the respiratory muscles, which have the advantage that the load can be accurately set by regulating frequency and depth of breathing.

Increased spine curvature is responsible for low back pain4,5 and swim- mer’s shoulder,6 so respiratory-muscle exercise may prevent these dysfunctions.

Because muscle strength for trunk flexion was noted to increase only in the exercise group, we conclude that the exercises strongly affected the abdominal muscles. Abe et al32 reported that the transverse abdominal muscle is the most powerful in the abdominal muscle group with respect to respiration. The transverse abdominal muscle may have been specifically targeted in this exercise. This important muscle is a key local stabilizer.

Contraction of the transverse abdominis increases intra-abdominal pressure, which leads to lumbar
straightening.33 In addition, a rise in intra-abdominal pres- sure presses the rib cage upward and effectively allows the extension of the thoracic vertebrae.34

In addition, we attribute the decrease of thoracic curvatures to a stretching effect on the thorax. In a previous study, Izumizaki et al35 reported that thoracic capacity and rib-cage movement were changed by thixotropy, which is the exercise of maxi- mal expiration from maximum inspiration. The stiffness of the rib cage leads to thoracic kyphosis.3 In this study, repetitive deep breathing resolved the stiffness of the rib cage and straightened thoracic kyphosis. This process may be responsible for altering the spinal curvature.

These training methods require a long period of 12 weeks for improvement. By contrast, our intervention period was 4 weeks, so spinal alignment may be improved in a much shorter period.

Ukjent sin avatar

Diaphragm Postural Function Analysis Using Magnetic Resonance Imaging

Studie som bekrefter alt om diafragma og dens bevegelse. Bl.a. at den har mye mev holdning og bevegelse å gjøre, og at baksiden beveger seg mest. Nevner også hva som er optimal bevegelse av diafragma for best fungere som stabilisator av ryggraden i bevegelse.

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0056724

When a load was applied to the lower limbs, the pathological subjects were mostly not able to maintain the respiratory diaphragm function, which was lowered significantly. Subjects from the control group showed more stable parameters of both respiratory and postural function. Our findings consistently affirmed worse muscle cooperation in the low back pain population subgroup

The diaphragm and deep stabilization muscles of the body have been described as an important functional unit for dynamic spinal stabilization [1], [2]. The diaphragm precedes any movement of the body by lowering and subsequently establishing abdominal pressure which helps to stabilize the lumbar part of the spine. Proper activation of the diaphragm within the stabilization mechanism requires the lower ribs to be in an expiratory (low) position. During the breathing cycle, the lower ribs have to stay in the expiratory position and only expand to the sides. This is an important assumption for the straight and stabilized spine. Under these conditions, the motion of the diaphragm during respiration is smooth, and properly helps to maintain abdominal pressure.

Dysfunction of the cooperation among diaphragm, abdominal muscles, pelvic floor muscles and the deep back muscles is the main cause of vertebrogenic diseases and structural spine findings such as hernia, spondylosis and spondylarthrosis [3], [4].

Noen studier å se nærmere på her:
Studies focused on diaphragm activation with the aim of posture stabilization include Hodges[11][14], who concluded phase modulation corresponding to the movement of the upper limbs in diaphragm electromyography records. Some works deal with various modes of diaphragm functions in various respiration types [15], [16] or in situations not directly related to respiration, e.g. activation during breath holding [17]. These studies have always concentrated on healthy subjects who did not exhibit symptoms of respiratory disease or vertebrogenic problems.

Og enda fler å se nærmere på her, spesielt relatert til scoliose:
Gierada [20] also used MRI for observing the anteroposterior size of the thorax, the height of the diaphragm during inspiration and expiration, and also the ventral and dorsal costophrenic angle during maximal breathe in and out. Kotani[21] and Chu [22] assessed chest and diaphragm movements for scoliosis patients. Suga [23]compared healthy subjects and subjects with chronic obstructive pulmonary disease (COPD), measuring the height, excursions and antero-posterior (AP) size of the diaphragm with the zone of apposition. Paradox diaphragm movements for subjects with COPD were investigated by Iwasawa [10]. Iwasawa used deep breath sequences while comparing diaphragm height and costophrenic angles. The study consisted of healthy subjects and subjects with scoliosis. Kotani [21] concluded that there was ordinary diaphragm motion with limited rib cage motion in the scoliosis group. The position of the diaphragm was measured relative to the apex of the lungs to the highest point of the diaphragm. Chu [22] compared healthy subjects against subjects with scoliosis, finding the same amount of diaphragm movement for both groups. The scoliosis group had the diaphragm significantly lower in the trunk and relatively smaller lung volumes. The distance between the apex of the lungs and the diaphragm ligaments was measured by Kondo [24], comparing young and old subjects. The effect of intraabdominal pressure on the lumbar part of the spine was observed by MRI and pressure measurement by Daggfeldt and Thorstensson [25]. Differences in diaphragm movement while performing thoracic or pulmonary breathing with the same spirometric parameters were tested by Plathow[26]. Plathow also examined the vital capacity of the lungs compared with 2D and 3D views in[27]. He concluded that there was a better correlation between the lung capacity and the 3D scans. In another study, Plathow focused on dynamic MRI. He proved significant correlations among diaphragm length and spirometric values vital capacity (VC), forced expiratory volume (FEV1) and other lung parameters [28].

Nevner også hvordan MRI-funn i ryggraden ikke har noe med smerte å gjøre:
Jensen found no direct connection between certain types of structural changes and LBP. The only structural change related to pain was disk protrusion. Carragee [31] studied MRI findings of 200 subjects after a period of low LBP, and found no direct significant MRI finding related to low back pain.

Nevner at problemer med pustefunksjon kan være en større indikator på ryggsmerter enn forandringer i ryggsøylen:
The way in which the diaphragm is used for non-breathing purposes is affected by it’s recruitment for respiration [32]. There is evidence that the presence of respiratory disease is a stronger predictor for low back pain than other established factors [33]. However, the relationship between the respiratory function and the postural function is widely disregarded[34]. Body muscles coordination for posture stabilization is a complex issue, and the role of the diaphragm in this cooperation has not been intensively studied [35].

Målet med studien:
he main goal is to separate respiratory diaphragm movements from non-respiratory diaphragm movements, and then to evaluate their role in body stabilization.
We investigated diaphragm reactability and movement during tidal breathing and breathing while a load was applied to the lower limbs.

Eksempel på diafragmas bevegelse:

Viser normal(C2) reaksjon på aktivitet(S2) og forskjellen i unormal(C1) reaksjon ved rygglager:

Figure 4. Dif-curves (solid line) and extracted res-curves (red dashed line) and pos-curves (green dotted line).

Example of harmonic breathing (A), breath with a strong postural part after the load occurred (B), harmonic breath which became partly non-harmonic after the load occurred (C, D), and breath which almost lost its ability of respiration movement ability after the load occurred (E, F).

Om hvor mye diafragma beveger seg:

As in the case of respiratory frequency, there was no change in respiratory curve amplitude in the control group when a load was applied to the lower limbs (1823 journal.pone.0056724.e253&representation=PNG journal.pone.0056724.e254&representation=PNG, 1928 journal.pone.0056724.e255&representation=PNG journal.pone.0056724.e256&representation=PNG). By contrast, the pathological group showed lowered excursions when load was applied (870 journal.pone.0056724.e257&representation=PNG journal.pone.0056724.e258&representation=PNG, 540 journal.pone.0056724.e259&representation=PNG journal.pone.0056724.e260&representation=PNG). The inter-situational difference was significantly different amongst the groups with journal.pone.0056724.e261&representation=PNG. In comparison with the pathological group, the control group had 3 times bigger excursions in situation journal.pone.0056724.e262&representation=PNG, and 6.5 times bigger excursions in the situation journal.pone.0056724.e263&representation=PNG.

In addition, the measurements showed great motion of the posterior diaphragm part than of the anterior part. Injournal.pone.0056724.e266&representation=PNG, the antero-posterior ratio was journal.pone.0056724.e267&representation=PNG within the control group and journal.pone.0056724.e268&representation=PNG within the pathological group. In journal.pone.0056724.e269&representation=PNG, the control group raised the range of the posterior part to journal.pone.0056724.e270&representation=PNG mm, resulting in an antero-posterior ratio of journal.pone.0056724.e271&representation=PNG. The pathological group, by contrast, raised the range in the anterior area and reduced the range in posterior area, resulting in an antero-posterior ratio of journal.pone.0056724.e272&representation=PNG.

Om hvordan pusten reagererer annerledes ved ryggsmerter:

We concluded that there was slower and deeper respiratory motion (parameters journal.pone.0056724.e362&representation=PNG) for both observed situations. In addition, after the postural demands rose in situation journal.pone.0056724.e363&representation=PNG, the breathing speed increased significantly (journal.pone.0056724.e364&representation=PNG) in the pathological group. In the same manner the breath depth (journal.pone.0056724.e365&representation=PNG) lessened significantly (journal.pone.0056724.e366&representation=PNG) in the pathological group. There were bigger postural moves in the control group, and they remained bigger in both situations, rising equally for each group.

Ved ryggsmerter er diafragma høyere opp i kroppen og lungene blir mindre:

The inclination of the diaphragm was greater (i.e. it was more verticalized) in the control group. The pathological group had the diaphragm placed significantly higher in the trunk, as indicated by the journal.pone.0056724.e372&representation=PNG parameter.

Om forholdet mellom diafragma og smerte, hd er høyden på diafragma, jo høyere jo mer smerte:

Diaphragm height were the only diaphragm parameter which was statistically significantly correlated (p = 0.0035) with the subjects’ low back pain indicated during the month before imaging. Pearson correlation coefficient was 0.67.

Om hvor mye diafragma beveger seg:
In the results section, we concluded that there is a statistically significant difference in the range of motion (ROM) of the diaphragm. A two and three times greater ROM was noted in the control group, than in the pathological group in situations journal.pone.0056724.e379&representation=PNG and journal.pone.0056724.e380&representation=PNG. In addition, the average diaphragm excursions journal.pone.0056724.e381&representation=PNG (central part) in situation journal.pone.0056724.e382&representation=PNG were journal.pone.0056724.e383&representation=PNG mm in the control group and journal.pone.0056724.e384&representation=PNGmm in the pathological group. In situation journal.pone.0056724.e385&representation=PNG, journal.pone.0056724.e386&representation=PNG was journal.pone.0056724.e387&representation=PNG mm in the control group and journal.pone.0056724.e388&representation=PNG mm in the pathological group.

We observed that the diaphragm was significantly higher for the pathological group. This may be a mechanism by which the pathological group was able to keep the diaphragm excursions more evenly spread after the postural demands increased.

Diafragma beveger seg normalt mer på baksiden:
We also observed that the diaphragm was more contracted in the posterior part for the control group. Diaphragm inclination measurements showed significant lowering of the posterior part of the diaphragm relative to the anterior part of the diaphragm for the control group. The pathological group kept the diaphragm in a more horizontal position.

Suwatanapongched [43]concluded that there was flattening of the diaphragm in the older population in his study. Our results did not show any significant age-related correlation of diaphragm flatness. Instead, the only significant correlation that we observed was between diaphragm height and the LBP intensity of the pathological group during the month before the measurements were made.

Jo høyere opp diafragma er, jo vanskeligerere blir den å bevege:
We assume that this diaphragm bulging is due to worse ability to contract the diaphragm properly. To the best of our knowledge, there are no results in the literature for measurements of diaphragm flatness in subjects suffering from LBP. Worse ability to contract the diaphragm in the pathological group is also supported by the significantly higher position in the trunk.

No correlation was concluded between measured parameters and pain intensity except for bulging (i.e. long term pain) of the diaphragm, as was discussed above. The results indicate that, as the pain is long term, the patients do not change their respiratory patterns according to fluctuations in the chronic LBP.

The significant differences in the harmonicity of the diaphragm motion observed in this study indicate changes in the central nervous system related to diaphragm function in subjects with pathological spinal findings suffering from various intensities of chronic low back pain. Low back pain is a wide-spread and widely studied phenomenon. Alternating respiratory patterns and anatomical changes in the diaphragm have been assessed in LBP subjects. Studies concluding increased susceptibility to pain and injury [1], [13], [49] identified differences in muscle recruitment in people suffering from LBP. Janssens [50] used fatigue of inspiratory muscles, and observed altered postural stabilizing strategy in healthy subjects. Jenssens also observed non-worsening stabilization with an already altered stabilizing strategy in subjects suffering from LBP. Grimstone [51] measured respiration-related body imbalance in subjects suffering from LBP, observing worse stability in subjects with LBP. Kolar [44] investigated differences in diaphragm contractions between healthy subjects and LBP subjects. He observed lesser contractions in the posterior part of the diaphragm while the postural demands on the lower limbs increased, and he suspected that intra-abdominal pressure lowering might be the underlying mechanism of LBP. Roussel [34] assessed the altered breathing patterns of LBP subjects during lumbopelvic motor control tests, concluding that some subjects used an altered breathing pattern to provide stronger support for spinal stability.
In our measurements, we did not observe the same diaphragm excursions in the posterior part of the diaphragm for healthy subjects and for subjects suffering from LBP as were observed by[44]. The excursions were reduced in the pathological group. In contrast with Kolar’s findings[44], we concluded that there was also lowering of the diaphragm inspiratory position in the pathological group in situation journal.pone.0056724.e399&representation=PNG. Our measurements support the hypothesis of less diaphragm contraction in the pathological group, with a significant correlation between diaphragm bulging and the intensity of the patient’s low back pain.

Om hvordan magemuskler er nødvendig for diafragma stabilitet:
In the pathological group, the abdominal muscles lack the ability to hold the ribs in lower position. For this reason, the insertion parts of the diaphragm are not fixed and the diaphragm muscle changes its activation. The diaphragm is disharmonic in its motion, which causes problems with providing respiration and at the same time retaining abdominal pressure. The muscle principle for spine stabilization is therefore violated, and is replaced by a substitute model, which tends more easily toward the emergence of low back pain, spine degeneration or disc hernia.

Reversed causation is always a possibility, i.e. it is possible that the diaphragm behavior is changed in order to stabilize the spine after the deep intrinsic spinal muscles fail. During these changes, breathing patterns may occur, e.g. breath holding and decreased diaphragm excursions.

Our study shows a way to compare the diaphragm motion within the group of controls without spinal findings and those who have a structural spinal finding, e.g. a hernia, etc., not caused by an injury. In this way, we confirm our experience of the influence of the diaphragm on spinal stability and respiration. The control group show a bigger range of diaphragm motion with lower breathing frequency. The diaphragm also performs better harmonicity (coordination) within its movement. The postural and breathing components are better balanced. This fact is very important for maintaining the intraabdominal pressure, which helps to support the spine from the front. For this reason, it plays a key role in treating back pain, hernias, etc. In the group of controls we also found a lower position of the diaphragm while it was in inspiration position in tidal breathing and also while being loaded. These facts also support the ability of the diaphragm to play a key role in maintaining the good stability of the trunk. It is also important that we are able to separate the phases of diaphragm movement. This supports both the postural function and the breathing function of this muscle due to MR imaging.

Ukjent sin avatar

Vascular Fasciatherapy Danis Bois Method: a Study on Mechanism Concerning the Supporting Point Applied on Arteries

Studie som nevner svært mye interessant om blodsirkulasjon, tensegritet og om bindevev. Den er rettet mot en spesifikk metode for spontan bevegelse, men har mye interessante teamer som gjelder andre bodyworkmetoder også.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3242644/

«Vascular research especially made a jump forward with the Nobel Prize awarded to Furchgott, Ignarro and Murad for having discovered the endogenous production of nitric oxide (NO). »

«Mesenchyme differentiates and generates every type of connective tissue and many organs in adults(3) including bone, muscle, and the middle layer of the skin, excepting nervous tissue and the digestive track(7).»

«In this study, one can notice that they are totally or partially at the origin of vascular endothelium and mesothelium (peritoneum, pleura, pericardium)(6). And this vascular endothelium is the origin of blood, which is also considered as specialized connective tissue(6).»

Forskjellen mellom arterier og kapillærer:
«Capillaries have the function of distributing blood in the body, bringing about an exchange between blood and tissues. Structurally, arteries carry and separate blood and tissues.»

«Fascia is a very sensitive tissue that detects any kind of stress — physical, emotional or psycho-social. It reacts by contracting and imprisoning the organs it covers, thus impairing their physiological functions. Furthermore, the tightening of their connective parts induces a perceptible disturbance in mobility and rhythm of these organs.»

«ECs respond to increased blood flow by causing relaxation of the surrounding VSMCs. VSMC relaxation in response to flow occurs over seconds to minutes and if high flow persists, remodeling of the artery wall enlarges the lumen over time in a period of weeks to months(36). Decreased flow induces vessel narrowing(37), and extreme low flow may lead to complete vessel regression, which involves apoptosis of the ECs(38).»

«The human body seems to be made of the only and same tissue which is functionally differentiated: there are only tissue connections, simply a histological continuum without any clear separation between the skin and hypodermis, the vessels, the aponeurosis, and the muscles(46). So connective tissue, its cells, MEC, and fibers are an obvious link in this construction.»

«The theory of tensegrity emerged from the interests of architects (from Richard Buckminster Fuller to Rene Motro) and biologists (Donald Ingber(47)), and their meeting point of connection with our discussion can be found in these definitions: “a type of prestressed structural network, composed of opposing tension and compression elements that self-stabilizes its shape through establishment of a mechanical force balance”, and “tensegrity is used to stabilize the shape of living cells, tissue and organs, as well as our whole bodies”(4). Hence, the use of this architectural system for structural organization provides a mechanism to physically integrate part and whole(4).»

«Arteries have a special relation with fascias. Connective tissue is present in the three tunics of the artery. Adventitia is a typical sheathing fascia, which becomes tense in reaction to stress. Media is an association of muscle and connective tissue reacting to local mechanical variations (i.e. blood pressure) or general influence (i.e. stress) by tensing and/or by contracting. Intima, whose endothelium can be assimilated to a very big autocrine/paracrine formation(48)reacting mainly to the influence of blood qualities (i.e. type of flow, components), lies on a connective layer underlining endothelium.»

Ukjent sin avatar

The Architecture of the Connective Tissu e in the Musculoskel etal System-An Often Overlooked Function al Parameter as to P roprioception in the Locomotor Apparatus

Om bindevevets struktur, mye om mechanoreceptors i bindevevet (golgi, ruffini og pacini spesielt), pluss den nevner «dynamic ligaments» som en del av bindevevet inni og igjennom muskler.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091473/

«The discrimination between so-called joint receptors and muscle receptors is an artificial distinction when function is considered. Mechanoreceptors, also the so-called muscle receptors, are arranged in the context of force circumstances-that is, of the architecture of muscle and connective tissue rather than of the classical anatomic structures such as muscle, capsules, and ligaments. »

«The receptors for proprioception are concentrated in those areas where tensile stresses are conveyed over the elbow joint. Structures cannot be divided into either joint receptors or muscle receptors when muscular and collagenous connective tissue structures function in series to maintain joint integrity and stability. In vivo, those connective tissue structures are strained during movements of the skeletal parts, those movements in turn being induced and led by tension in muscular tissue. In principle, because of the architecture, receptors can also be stimulated by changes in muscle tension without skeletal movement, or by skeletal movement without change in muscle tension. »

«A mutual relationship exists between structure (and function) of the mechanoreceptors and the architecture of the muscular and regular dense connective tissue. Both are instrumental in the coding of proprioceptive information to the central nervous system.»

«Schleip mentions the fascia as «the dense irregular connective tissue that surrounds and connects every muscle, even the tiniest myofibril, and every single organ of the body forming continuity throughout the body.»(

The following popper user interface control may not be accessible. Tab to the next button to revert the control to an accessible version.

Destroy user interface control2,

The following popper user interface control may not be accessible. Tab to the next button to revert the control to an accessible version.

Destroy user interface control3) In this way, fascia is considered an important integrative element in human posture and movement organization (locomotor apparatus) and is often referred to as the «organ of form.»(

The following popper user interface control may not be accessible. Tab to the next button to revert the control to an accessible version.

Destroy user interface control4) »

«The primary connective tissue of the body is the embryonic mesoderm. The mesoderm represents the matrix and environment within which the organs and structures of the body have been differentiated and therefore are embedded.»

«The principal function of mesoderm as «inner tissue» is «mediating» in the sense of «connecting» (binding) and «disconnecting» (shaping space). »

«Regular dense connective tissue structures such as ligaments convey (transmit) those forces «passively.»»

«Connective tissue and fasciae are richly innervated. Fascial layers may thus play an important role in proprioception and nociception. Considerations such as «architecture versus anatomy (topography),»mutatis mutandis may also apply for the spatial organization of mechanoreceptors, the morphologic substrate for proprioception. »

«Mechanoreceptors are in fact free nerve endings (FNEs), whether or not equipped with specialized end organs. The main stimulus for such receptors is deformation. Variation exists as to the microarchitecture of the ending.»

«Mechanoreceptors associated with muscles, including the muscle auxiliary structures such as tendons, are usually classified(14

The following popper user interface control may not be accessible. Tab to the next button to revert the control to an accessible version.

Destroy user interface control17) as follows:

  • FNEs (unencapsulated)
  • Muscle spindles (sensory endings with encapsulated intrafusal muscle fibers)
  • GTOs (type III endings, relatively large-100 -600 μm diameter-spray-like endings, with high threshold and very slow-adapting)

The mechanoreceptors typically associated with joints are these:

  • FNEs (unencapsulated)
  • LCs (type II ending with a two- to five-layered capsule, less than 100 μm in length, with low threshold and rapidly adapting). Here, this term is preferred to paciniform corpuscle.
  • RCs (type I ending, relatively small-up to 100 μm-spray-like ending with low threshold and slow-adapting)»

«Those nerve fibers are involved in the afferent pathway of proprioceptive information from the transitional areas between the connective tissue layers and the muscle fascicles organized in series with them [shown schematically in Fig. 7(a)]. This also seems to represent a more ligamentous or articular «pattern of innervation» compared with the related nerve fascicles running on the «outside» of the innervated structure. This is actually a typical capsular or articular pattern [see Fig. 7(a)]. »

«An in series unit of muscular tissue/RDCT layer/skeletal element equipped with mechanosensitive substrate at the transitional areas between the various tissue components constitutes the basic unit of the spatial organization of the substrate of proprioception. Such a unit may occur as a muscle fraction in series with a muscle compartment wall that is shared with the muscular tissue of an adjacent muscle. It may also appear as a muscle compartment wall with muscle fascicles inserting unilaterally and with afferent nerve fibers reaching the related mechanoreceptors from the outer side. This was introduced earlier as the typical «dynamic ligament» (dynament-see Fig. 10, pattern 4).»

«The conclusion is that, in vivo, the activity of a mechanoreceptor is defined not only by its functional properties, but also by its architectural environment. If Abrahams, Richmond, and Bakker(

The following popper user interface control may not be accessible. Tab to the next button to revert the control to an accessible version.

Destroy user interface control34) state that the topography of mechanoreceptors provides a «subtle comparative function in the process of sensory coding of muscle events,» they raise the important issue of the spatial distribution of receptors in the process of proprioception. To this should be added the notion that the architecture of the muscular and connective tissue and consequent receptor distribution plays a significant role in the coding of the proprioceptive information that is provided.»

Ukjent sin avatar

The effects of neurodynamic mobilization on fluid dispersion within the tibial nerve at the ankle: an unembalmed cadaveric study

Om hva nevropati og skader på nerver gjør, og hvordan neurodynamiske øvelser øker blodsirkulasjon internt i nerven. Nevner også hvordan skader, lav blodsirkulasjon og betennelser skaper sammensmeltninger i bindevevet mellom nerver og omliggende vev (muskler, skjelett, bindevev) som gjør at nervene ikke glir og dermed kan gi oss begrenset bevegelighet.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172954/

«These disorders include compression syndromes or other neuromuscular conditions that may be accompanied by neuropathic pain. Damaged nerves exhibit predictable pathophysiological responses including impaired nerve mobility, increased mechanosensitivity, impaired nerve conduction, nerve tissue ischemia, axonal transport inhibition, and intraneural edema.

The following popper user interface control may not be accessible. Tab to the next button to revert the control to an accessible version.  Impaired nerve mobility and increased mechanosensitivity provide the basis for existing studies of neurodynamic techniques. »

«Impaired nerve mobility and mechanosensitivity can be clinically assessed by measuring changes in joint range of motion, pain reproduction, or change of symptoms following neurodynamic mobilization.

«Intraneural edema is a common response to nerve injury, and is intimately involved in the proliferation of damage to nerve structure and function.

The following popper user interface control may not be accessible. Tab to the next button to revert the control to an accessible version. Edema is found in peripheral nerves that have been subject to trauma such as compression,excessive tension events, or vibration.  Even mild injury may result in epineurial edema,  but compression that is prolonged or of great magnitude leads to a breach of the diffusion barriers created by both the perineurium and microvasculature, resulting in endoneurial edema. The absence of lymphatic vessels in the endoneurium limits drainage of this edema, thereby creating a ‘mini-compartment syndrome’ within the nerve. »

«This ‘mini-compartment syndrome’, due to the increase in endoneurial pressure, subsequently leads to fibrosis and adhesions, impairing intrafascicular gliding. This loss of intrafascicular gliding creates an internal stretch lesion (Fig. 1). »

«The results showed significant mobilization effects in that there was increased fluid dispersion within the tibial nerve after the intervention. »

…de brukte bare kadavere i denne studien.
«The results showed significant mobilization effects in that there was increased fluid dispersion within the tibial nerve after the intervention. Because the tibial nerve was dissected free of all adjacent tissue and eliminated any external interfaces, the response to the mobilization appeared to be due to intraneural mechanics.»

Bevegelsene «pumper» internt i nerven og øker blodgjennomstreømning.
«During the mobilization technique, the tibial nerve alternately elongated and shortened which may have provided a temporary increase in intraneural pressure followed by a period of relaxation. Although speculative, it appears that this repetitive or ‘pumping’ action may have created a flushing of the dye and an alteration of the intraneural pressure as the intraneural fluid was dispersed.»

«In the early stages of stretch injury or compression, the ability to prevent or at least reduce edema may prevent or slow the inhibition of blood flow, thus preventing the sequelae leading to impaired axonal transport, demyelination, loss of elasticity due to fibrosis or adhesions, and ultimately to alteration in nerve structure and function. «

Ukjent sin avatar

The kinaesthetic senses

Viktig studie som oppsummerer det meste rundt de kinestetiske sansene, og nevner spesielt at hudens nerveender har mer å si for ledd utslag enn selve ledd-cellene. Den nevner også hvordan hjernens egengenererte opplevelse av bevegelsen spiller inn.

http://m.jp.physoc.org/content/587/17/4139.long

«Peripheral receptors which contribute to kinaesthesia are muscle spindles and skin stretch receptors. Joint receptors do not appear to play a major role at most joints. The evidence supports the existence of two separate senses, the sense of limb position and the sense of limb movement.»

«The term ‘kinaesthesia’ was coined by Bastian (1888) and refers to the ability to sense the position and movement of our limbs and trunk. It is a mysterious sense since, by comparison with our other senses such as vision and hearing, we are largely unaware of it in our daily activities.»

«The cutaneous receptor most likely to subserve a kinaesthetic role is the skin stretch receptor, the slowly adapting Type II receptor served by Ruffini endings (Chambers et al. 1972; Edin, 1992).»

«More recent observations have shown that skin input can also have an occluding action. Signals from local, rapidly adapting receptors evoked by low-amplitude, high frequency vibration can impede movement detection (Weerakkody et al. 2007).»

«While joint receptors were first thought to be all-important in kinaesthesia, the present-day view is that their contribution at most joints is likely to be minor. Typically they respond to joint movement, but often with response peaks at both limits of the range of joint motion (Burgess & Clark, 1969). They are now thought of as limit detectors. »

«It was believed that signals of motor command could calibrate sensory input coming from the periphery but did not generate sensations in their own right. For a review see Gandevia (1987). In these new experiments (Gandevia et al. 2006) conduction in both afferent and motor fibres to the hand was blocked with a pressure cuff applied to the upper arm. When subjects tried to move their paralysed, anaesthetised hand they perceived a distinct displacement of the hand by up to 20 deg (Fig. 3). »

«Thus most kinaesthetic afferents must reside in muscle or skin since joint replacement surgery does not lead to any deficit in kinaesthesia (Grigg et al. 1973).»

«It has been reported by Shergill et al. (2003) that self-generated forces were perceived as weaker than externally generated forces, suggesting that central mechanisms allow us to distinguish between our own actions and those imposed on us from outside. It reminds us that to be able to move about freely in the environment and to carry out actions with the necessary levels of accuracy requires us to know what parts belong to our own body, the sense of ownership, and where those parts are located. We have a body map, or schema, of our body parts (e.g. Maravita et al. 2003).»