Ukjent sin avatar

Diaphragmatic Breathing Reduces Exercise-Induced Oxidative Stress

Om hvordan diafragmisk pust (med magen) øker antioksidantbeskyttelsen og restitusjonen ved å senke kortison og øke melatonin. Gjort på et 24t sykkerlritt hvor de som gjorde 1t pusteing før de sovnet fikk raskere restitusjon. Nevner direkte sammenheng mellom kortisol og melatonin. Og påstår at pusten bør implementeres i ethvert treningsregime som restitusjon.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139518/

Analysis of oxidative stress levels in people who meditate indicated that meditation correlates with lower oxidative stress levels, lower cortisol levels and higher melatonin levels. It is known that cortisol inhibits enzymes responsible for the antioxidant activity of cells and that melatonin is a strong antioxidant

Results demonstrate that relaxation induced by diaphragmatic breathing increases the antioxidant defense status in athletes after exhaustive exercise. These effects correlate with the concomitant decrease in cortisol and the increase in melatonin. The consequence is a lower level of oxidative stress, which suggests that an appropriate diaphragmatic breathing could protect athletes from long-term adverse effects of free radicals.

Stress is defined as a physiological reaction to undesired emotional or physical situations. Initially, stress induces an acute response (fight or flight) that is mediated by catecholamines. When stress becomes chronic and lasts for a long time, the stressed organism reacts with physiological alterations to adapt to the unfavorable conditions. This ACTH-mediated reaction affects the immune and neuroendocrine systems, and it is responsible for several diseases [1]. Numerous data support the hypothesis that the pathophysiology of chronic stress can be due, at least partially, to an increase in oxidative stress [24], which may also contributes to heart disease [5,6], rheumatoid arthritis [7,8], hypertension [9,10], Alzheimer’s disease [11,12], Parkinson’s disease [13], atherosclerosis [14] and, finally, aging [15].

High levels of glucocorticoids are known to decrease blood reduced glutathione (GSH) and erythrocyte superoxide dismutase (SOD) activity in rats [20]. Other enzymes are also involved, and NADPH oxidase, xanthine oxidase and uncoupled endothelial nitric oxide synthase are important sources of reactive oxygen species (ROS) in glucocorticoid-induced oxidative stress (see [9] for a review on this argument).

Hormonal reactions to stressors, in particular plasma cortisol levels, are lower in people who meditate than in people who do not [3136], suggesting that it is possible to modulate the neuroendocrine system through neurological pathways. Analysis of oxidative stress levels in people who meditate indicated that transcendental meditation, Zen meditation and Yoga correlate with lower oxidative stress levels [3743].

Melatonin could also be involved in the reduction of oxidative stress because increased levels of this hormone have been reported after meditation [4446]. This neurohormone is considered a strong antioxidant and is used as a treatment for aging. Melatonin in fact, increases several intracellular enzymatic antioxidant enzymes, such as SOD and glutathione peroxidase (GSH-Px) [47,48], and induces the activity of γ-glutamylcysteine synthetase, thereby stimulating the production of the intracellular antioxidant GSH (49]. A number of studies have shown that melatonin is significantly better than the classic antioxidants in resisting free-radical-based molecular destruction. In these in vivostudies, melatonin was more effective than vitamin E, β-carotene [5052] and vitamin C [5355].

Although it has been established that a continuous and moderate physical activity reduces stress, intense and prolonged exercise is deleterious and needs a proper recovery procedure.

Plasma cortisol levels increase in response to intense and prolonged exercise [60,61]. Ponjee et al. [62] demonstrated that cortisol increased significantly in male athletes after they ran a marathon. In another study, plasma ACTH and cortisol were found elevated in highly trained runners and in sedentary subjects after intense treadmill exercise [63].

Most, if not all, meditation procedures involve diaphragmatic breathing (DB), which is the act of breathing deeply into the lungs by flexing the diaphragm rather than the rib cage. DB is relaxing and therapeutic, reduces stress and is a fundamental procedure of Pranayama Yoga, Zen, transcendental meditation and other meditation practices.

Athletes were monitored during a training session for a 24-h long contest. This type of race lasts for 24h, generally starting at 10:00am and ending at 10:00am the following day. Bikers ride as many kilometers as possible on a specific circuit trail in the 24-h period. Athletes are allowed to stop, to sleep, to rest and to eat as much food as they want to eat.

Subjects of the studied group were previously trained to relax by performing DB and concentrating on their breath. These athletes spent 1h (6:30–7:30pm) relaxing performing DB in a quiet place. The other eight subjects, representing the control group, spent the same time sitting in an equivalent quite place. The only activity allowed was reading magazines. Lighting levels were monitored throughout the experiment and did not exceed 15 lux, a level well below that known to influence melatonin secretion [73,74].

As expected, the exercise induced a strong oxidative stress in athletes (Figure 1).

BAP (Biological Antioxidant Potential) levels were determined at different times, before and after exercise. Athletes were divided in two equivalent groups of eight subjects. Subjects of the studied group spent 1h relaxing performing DB and concentrating on their breath in a quiet place. The other eight subjects, representing the control group, spent the same time sitting in an equivalent quite place. Since this test must be performed several hours after food ingestion, BAP levels were determined pre-exercise at 8:00am before breakfast, at 2:00am, and at 8:00am 24h post-exercise. Values shown are mean ± SD. *P < .05 DB versus control group. **P < .01 DB versus control group.

This study demonstrates that DB reduces the oxidative stress induced by exhaustive exercise. To our knowledge, this is the first study which explores the effect of DB on the stress caused by exhaustive physical activity.

The rationale is as follows (Figure 5)

  1. intense exercise increases cortisol production;
  2. a high plasmatic level of cortisol decreases body antioxidant defenses;
  3. a high plasmatic level of cortisol correlates with a high level of oxidative stress;
  4. DB reduces the production of cortisol;
  5. DB increases melatonin levels;
  6. melatonin is a strong antioxidant;
  7. DB increases the BAP and
  8. DB reduces oxidative stress.

If these results are confirmed in other intense physical activity programs, relaxation could be considered an effective practice to significantly contrast the free radical-mediated oxidative damage induced by intense exercise. Therefore, similar to the way that antioxidant supplementation has been integrated into athletic training programs, DB or other meditation techniques should be integrated into many sports as a method to improve performance and to accelerate recovery.

Hyperventilation, in fact, induces hyperoxia which is known to be related with oxidative stress [81,82]. The hyperventilation syndrome affects 15% of the population and occurs when breathing rates elevate to 21–23 bpm as a result of constricted non-DB. DB can treat hyperoxia and its consequences acting by two synergic ways: restoring the normal breath rhythm and reducing oxidative stress mainly through the increase in melatonin production which is known for its ability to reduce oxidative stress induced by exposure to hyperbaric hyperoxia [83].

Moreover, Orme-Johnson observed greatly reduced pathology levels in regular meditation practitioners [84,85]. A 5 years statistic of approximately 2000 regular participants demonstrated that Transcendental Meditation reduced benign and malignant tumors, heart disease, infectious diseases, mental disorders and diseases of the nervous system. Mourya et al. evidenced that slow-breathing exercises may influence autonomic functions reducing blood pressure in patients with essential hypertension [86]. Finally, there are also evidences that procedures which involve the control of the breathing can positively affect type 2 Diabetes [87], depression, pain [88], high glucose level and high cholesterol [89].

The role of melatonin must also be emphasized. Beyond its antioxidant properties, melatonin is involved in the regulation of the circadian sleep-wake rhythm and in the modulation of hormones and the immune system. Due to its wide medical implications, the increase in melatonin levels induced by DB suggests that this breath procedure deserves to be included in public health improvement programs.

DB increased the levels of melatonin in athletes, and this correlates with lower oxidative stress (ROMs), with lower cortisol levels and with the higher antioxidant status (BAP) in these athletes.

Tooley et al. [46] speculated that meditation-reduced hepatic blood flow [91] could raise the plasma levels of melatonin. Alternatively, since meditation increases plasma levels of noradrenaline [92] and urine levels of the metabolite 5HIAA [93], a possible direct action on the pineal gland could be hypothesized, as melatonin is synthesized in the pineal by serotonin under a noradrenaline stimulus [94]. More likely, we suspect that the increase in melatonin levels determined in our experiment can be mainly attributed to the reduced cortisol levels. Actually, a relationship between cortisol and melatonin rhythms has been observed [95], indicating that melatonin onset typically occurs during low cortisol secretion.

Overall, these data demonstrate that relaxation induced by DB increases the antioxidant defense status in athletes after exhaustive exercise. These effects correlate with the concomitant decrease in cortisol, which is known to negatively affect antioxidant defenses, and the increase in melatonin, a strong antioxidant. The consequence is a lower level of oxidative stress, which suggests that an appropriate recovery could protect athletes from long-term adverse effects of free radicals.

Ukjent sin avatar

Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea

Med pustetrening blir melkesyrekonsentrasjonen lavere under trening. 2 studier her, første fra 2008 og den andre fra 2012.

Den første nevner at melkesyre synker med opptil 59% (25+34%)

http://www.ncbi.nlm.nih.gov/pubmed/18560878

Although reduced blood lactate concentrations ([lac(-)](B)) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction.

After 6 weeks, increases in [lac(-)](B) during volitional hyperpnoea were unchanged in the control group. Conversely, following IMT the increase in [lac(-)](B) during volitional hyperpnoea was reduced by 17 +/- 37% and 25 +/- 34% following 8 and 10 min, respectively (P < 0.05).

These findings suggest that the inspiratory muscles were the source of at least part of this reduction, and provide a possible explanation for some of the IMT-mediated reductions in [lac(-)](B), often observed during whole-body exercise.

Inspiratory muscle training abolishes the blood lactate increase associated with volitional hyperpnoea superimposed on exercise and accelerates lactate and oxygen uptake kinetics at the onset of exercise.

Den andre viser til en 15% laver melkesyrekonsentrasjon og at årsaken er pustemusklenes evne til å fjerne det.

http://www.ncbi.nlm.nih.gov/pubmed/21964908

Following the intervention, maximal inspiratory mouth pressure increased 19% in the IMT group only (P < 0.01). Following IMT only, the increase in [lac(-)](B) during volitional hyperpnoea was abolished (P < 0.05). In addition, the blood lactate (-28%) and phase II oxygen uptake (-31%) kinetics time constants at the onset of exercise and the MLSS [lac(-)](B) (-15%) were reduced (P < 0.05). We attribute these changes to an IMT-mediated increase in the oxidative and/or lactate transport capacity of the inspiratory muscles.

Ukjent sin avatar

Inspiratory muscle training lowers the oxygen cost of voluntary hyperpnea

Nevner at innpustmuskel trening gir mindre oksygenbehov under trening og dermed mer utholdenhet. Innpustmuskler bruker opp mye av oksygenet kroppen trenger under trening så med svak pustefunksjon blir man fort sliten. Under maksimal trening krever pustemusklene 15% av oksygenet, men med pustetrening synker det til 8%. Den nevner at diafragma og pustemuskler blir sterkere og større. Den henviser også til studier som nevner at det gir mindre melkesyre. Noe av effekten kommer også av at man får en større reserve i lungene ved å øke inn- og utpust styrken.

http://jap.physiology.org/content/112/1/127.full

IMT significantly reduced the O2 cost of voluntary hyperpnea, which suggests that a reduction in the O2 requirement of the respiratory muscles following a period of IMT may facilitate increased O2 availability to the active muscles during exercise. These data suggest that IMT may reduce the O2cost of ventilation during exercise, providing an insight into mechanism(s) underpinning the reported improvements in whole body endurance performance; however, this awaits further investigation.

THE OXYGEN COST of breathing or energy requirement of the respiratory muscles are shown to increase relative to the level of ventilation (V̇E) and the work of breathing (Wb) (1, 8). During moderate-intensity exercise the respiratory musculature requires ∼3–6% of total oxygen consumption (V̇O2T), increasing to ∼10–15% at maximal exercise (1, 3).

Inspiratory muscle training (IMT) is an intervention that has been associated with improvements in whole body exercise performance (24, 31, 34), enhanced pulmonary oxygen uptake kinetics (5), reduced blood lactate concentrations (6, 24), diaphragmatic fatigue, and cardiovascular responsiveness (37).


The oxygen cost of voluntary hyperpnea (V̇O2RM) and V̇O2RM expressed as a percentage of total oxygen consumption (V̇O2T) graphed against V̇E at low (50% V̇O2 max), moderate (75% V̇O2 max), and high (100% V̇O2 max) exercise intensities for both IMT (A) and CON (B) groups, pre- and post-training (means ± SE).
•, Pre-IMT;
○, post-IMT;
▴, pre-CON;
Δ, post-CON.

To our knowledge this study is the first to investigate the influence of IMT on the oxygen cost of voluntary hyperpnea. The main findings of the present study are that the relationship between increasing ventilatory workloads and the O2 cost of voluntary hyperpnea is curvilinear in trained cyclists and that 6 wk of pressure threshold IMT significantly reduced the O2 cost of V̇E at high ventilatory workloads. Importantly, the finding that V̇O2RM is reduced at a V̇E above 50% V̇O2 max suggests that IMT may reduce the energy requirements of the respiratory musculature in maintaining a given V̇E.

The increase in energy expenditure as V̇E increases can be attributed to a variety of sources of respiratory muscle work, including the elastic recoil of the chest and lung wall, airway resistance (4,15), increased EELV (9), and high muscle shortening velocities (19, 23). It has been suggested that as tidal breathing approaches the maximal limits for inspiratory muscle pressure development and expiratory flow rates, energy expenditure may increase to overcome the additional respiratory muscle work (3). Conversely, if one or more of the additional sources of respiratory muscle work are reduced as a result of IMT, it is reasonable to suggest that the increase in the O2 cost maybe attenuated.

In the present study, following 6 wk of IMT, V̇O2RM was significantly reduced from pretraining values at submaximal and maximal levels of ventilation. The O2 cost of voluntary hyperpnea expressed as a percentage of V̇O2T was reduced by 1.5% at a V̇Ecorresponding to 75% V̇O2max following IMT. The greatest reduction in the O2 cost of voluntary hyperpnea was observed at V̇O2 max, where V̇O2RM was significantly reduced from 11% of V̇O2T to 8% V̇O2T following IMT.

Increased ventilatory demand was previously shown to elicit a sympathetically mediated metaboreflex (33), which increases heart rate and mean arterial pressure (MAP), reducing blood flow to the limb locomotor muscles during exercise (16) and potentially reducing whole body endurance performance (18). Furthermore, Witt et al. (37) showed that IMT attenuates this increase in HR and MAP, presumably by reducing or delaying the sympathetically mediated reflex.

The 22% increase in respiratory muscle strength shown in the present study is similar in magnitude to those previously reported using pressure-threshold IMT (11, 22, 30, 32, 37). Respiratory muscle structure has also been shown to change following IMT, with an increase in diaphragm thickness (11, 12) and hypertrophy of type II muscle fibers of the external intercostal muscles (27) being reported.

Aaron et al. (3) demonstrated that individuals who reached their reserve for expiratory flow and inspiratory muscle pressure development required 13–15% of V̇O2T compared with ∼10% of V̇O2T for non-flow-limited individuals. Thus, an increase in maximal expiratory flow rates or inspiratory pressure development would increase the ventilatory reserve, thereby increasing the maximal limits for ventilation.

Ukjent sin avatar

Energy cost of breathing at depth: effect of respiratory muscle training

Om at å trene innpustmuskler gjør det lettere å puste normale og uanstrengt etterpå.

http://www.ncbi.nlm.nih.gov/pubmed/22908839

RRMT significantly reduced the energy cost of ventilation, measured as delta VO2/delta V(E) during ISEV, at a depth of 55 fsw. Whether this change was due to reduced work of breathing and/or increased efficiency of the respiratory muscles remains to be determined.

Ukjent sin avatar

Effects of Respiratory-Muscle Exercise on Spinal Curvature

Nevner hvor mye diafragma og pustemuskler har å si for kontroll og stabilitet i bevegelse. Bla. kjernemuskulatur og intraabdominalt trykk.

http://posturalrestoration.com/media/pdfs/Effects_of_Respiratory-Muscle_Exercise_on_Spinal_Curvature.pdf

Respiratory-muscle exercises are used not only in the rehabilitation of patients with respiratory disease but also in endurance training for ath- letes. Respiration involves the back and abdominal muscles. These muscles are 1 of the elements responsible for posture control, which is integral to injury prevention and physical performance.

The results suggest that respiratory-muscle exercise straightened the spine, leading to good posture control, pos- sibly because of contraction of abdominal muscles.

In competitive sports, the spine of young athletes can have excess thoracic kyphosis and lumbar lordosis because it is the conduit for transferring mechanical power between the upper and lower extremities during rapid and forceful movements.1

Under the influence of these forces, athletes have much degeneration of the intervertebral disks,2 and the loss of disk height with denaturation is associated with increased spine curva- ture.1 Thoracic kyphosis and lumbar lordosis contribute to back pain.3

The loss or increase of lumbar lordosis correlates well with the incidence of chronic low back pain.4,5 In addition, thoracic kyphosis leads to shoulder pain.3

Spinal-alignment control is essential for preventing various injuries. Align- ment depends on muscle strength and balance, muscle tightness, and skeletal structure.9

The trunk muscles are grouped into 2 categories: global and local stabilizers.10 The global stabilizers com- prise superficial muscles such as the rectus abdominis and longissimus muscles, and the local stabilizers are deep muscles, for example, the transverse abdominal and multifidus muscles.10 Cholewicki et al11 reported that thecontraction of local stabilizers is indispensable to trunk stability; that is, the trunk becomes unstable in the case of contraction of global stabilizers alone. The unstable trunk increases stress to the ligament and bone that control the end of motion and cause pain such as back pain.12

Respiratory-muscle exercises are used in the reha- bilitation of chronic obstructive pulmonary disease18 and endurance exercise for athletes.19 The muscles comprise the diaphragm, intercostal muscles, and the accessory muscles of respiration.20 The accessory muscles of res- piration consist of several of the trunk muscles, includ- ing local stabilizers. Therefore, this study focused on exercises for the respiratory muscles, which have the advantage that the load can be accurately set by regulating frequency and depth of breathing.

Increased spine curvature is responsible for low back pain4,5 and swim- mer’s shoulder,6 so respiratory-muscle exercise may prevent these dysfunctions.

Because muscle strength for trunk flexion was noted to increase only in the exercise group, we conclude that the exercises strongly affected the abdominal muscles. Abe et al32 reported that the transverse abdominal muscle is the most powerful in the abdominal muscle group with respect to respiration. The transverse abdominal muscle may have been specifically targeted in this exercise. This important muscle is a key local stabilizer.

Contraction of the transverse abdominis increases intra-abdominal pressure, which leads to lumbar
straightening.33 In addition, a rise in intra-abdominal pres- sure presses the rib cage upward and effectively allows the extension of the thoracic vertebrae.34

In addition, we attribute the decrease of thoracic curvatures to a stretching effect on the thorax. In a previous study, Izumizaki et al35 reported that thoracic capacity and rib-cage movement were changed by thixotropy, which is the exercise of maxi- mal expiration from maximum inspiration. The stiffness of the rib cage leads to thoracic kyphosis.3 In this study, repetitive deep breathing resolved the stiffness of the rib cage and straightened thoracic kyphosis. This process may be responsible for altering the spinal curvature.

These training methods require a long period of 12 weeks for improvement. By contrast, our intervention period was 4 weeks, so spinal alignment may be improved in a much shorter period.

Ukjent sin avatar

Diaphragm Postural Function Analysis Using Magnetic Resonance Imaging

Studie som bekrefter alt om diafragma og dens bevegelse. Bl.a. at den har mye mev holdning og bevegelse å gjøre, og at baksiden beveger seg mest. Nevner også hva som er optimal bevegelse av diafragma for best fungere som stabilisator av ryggraden i bevegelse.

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0056724

When a load was applied to the lower limbs, the pathological subjects were mostly not able to maintain the respiratory diaphragm function, which was lowered significantly. Subjects from the control group showed more stable parameters of both respiratory and postural function. Our findings consistently affirmed worse muscle cooperation in the low back pain population subgroup

The diaphragm and deep stabilization muscles of the body have been described as an important functional unit for dynamic spinal stabilization [1], [2]. The diaphragm precedes any movement of the body by lowering and subsequently establishing abdominal pressure which helps to stabilize the lumbar part of the spine. Proper activation of the diaphragm within the stabilization mechanism requires the lower ribs to be in an expiratory (low) position. During the breathing cycle, the lower ribs have to stay in the expiratory position and only expand to the sides. This is an important assumption for the straight and stabilized spine. Under these conditions, the motion of the diaphragm during respiration is smooth, and properly helps to maintain abdominal pressure.

Dysfunction of the cooperation among diaphragm, abdominal muscles, pelvic floor muscles and the deep back muscles is the main cause of vertebrogenic diseases and structural spine findings such as hernia, spondylosis and spondylarthrosis [3], [4].

Noen studier å se nærmere på her:
Studies focused on diaphragm activation with the aim of posture stabilization include Hodges[11][14], who concluded phase modulation corresponding to the movement of the upper limbs in diaphragm electromyography records. Some works deal with various modes of diaphragm functions in various respiration types [15], [16] or in situations not directly related to respiration, e.g. activation during breath holding [17]. These studies have always concentrated on healthy subjects who did not exhibit symptoms of respiratory disease or vertebrogenic problems.

Og enda fler å se nærmere på her, spesielt relatert til scoliose:
Gierada [20] also used MRI for observing the anteroposterior size of the thorax, the height of the diaphragm during inspiration and expiration, and also the ventral and dorsal costophrenic angle during maximal breathe in and out. Kotani[21] and Chu [22] assessed chest and diaphragm movements for scoliosis patients. Suga [23]compared healthy subjects and subjects with chronic obstructive pulmonary disease (COPD), measuring the height, excursions and antero-posterior (AP) size of the diaphragm with the zone of apposition. Paradox diaphragm movements for subjects with COPD were investigated by Iwasawa [10]. Iwasawa used deep breath sequences while comparing diaphragm height and costophrenic angles. The study consisted of healthy subjects and subjects with scoliosis. Kotani [21] concluded that there was ordinary diaphragm motion with limited rib cage motion in the scoliosis group. The position of the diaphragm was measured relative to the apex of the lungs to the highest point of the diaphragm. Chu [22] compared healthy subjects against subjects with scoliosis, finding the same amount of diaphragm movement for both groups. The scoliosis group had the diaphragm significantly lower in the trunk and relatively smaller lung volumes. The distance between the apex of the lungs and the diaphragm ligaments was measured by Kondo [24], comparing young and old subjects. The effect of intraabdominal pressure on the lumbar part of the spine was observed by MRI and pressure measurement by Daggfeldt and Thorstensson [25]. Differences in diaphragm movement while performing thoracic or pulmonary breathing with the same spirometric parameters were tested by Plathow[26]. Plathow also examined the vital capacity of the lungs compared with 2D and 3D views in[27]. He concluded that there was a better correlation between the lung capacity and the 3D scans. In another study, Plathow focused on dynamic MRI. He proved significant correlations among diaphragm length and spirometric values vital capacity (VC), forced expiratory volume (FEV1) and other lung parameters [28].

Nevner også hvordan MRI-funn i ryggraden ikke har noe med smerte å gjøre:
Jensen found no direct connection between certain types of structural changes and LBP. The only structural change related to pain was disk protrusion. Carragee [31] studied MRI findings of 200 subjects after a period of low LBP, and found no direct significant MRI finding related to low back pain.

Nevner at problemer med pustefunksjon kan være en større indikator på ryggsmerter enn forandringer i ryggsøylen:
The way in which the diaphragm is used for non-breathing purposes is affected by it’s recruitment for respiration [32]. There is evidence that the presence of respiratory disease is a stronger predictor for low back pain than other established factors [33]. However, the relationship between the respiratory function and the postural function is widely disregarded[34]. Body muscles coordination for posture stabilization is a complex issue, and the role of the diaphragm in this cooperation has not been intensively studied [35].

Målet med studien:
he main goal is to separate respiratory diaphragm movements from non-respiratory diaphragm movements, and then to evaluate their role in body stabilization.
We investigated diaphragm reactability and movement during tidal breathing and breathing while a load was applied to the lower limbs.

Eksempel på diafragmas bevegelse:

Viser normal(C2) reaksjon på aktivitet(S2) og forskjellen i unormal(C1) reaksjon ved rygglager:

Figure 4. Dif-curves (solid line) and extracted res-curves (red dashed line) and pos-curves (green dotted line).

Example of harmonic breathing (A), breath with a strong postural part after the load occurred (B), harmonic breath which became partly non-harmonic after the load occurred (C, D), and breath which almost lost its ability of respiration movement ability after the load occurred (E, F).

Om hvor mye diafragma beveger seg:

As in the case of respiratory frequency, there was no change in respiratory curve amplitude in the control group when a load was applied to the lower limbs (1823 journal.pone.0056724.e253&representation=PNG journal.pone.0056724.e254&representation=PNG, 1928 journal.pone.0056724.e255&representation=PNG journal.pone.0056724.e256&representation=PNG). By contrast, the pathological group showed lowered excursions when load was applied (870 journal.pone.0056724.e257&representation=PNG journal.pone.0056724.e258&representation=PNG, 540 journal.pone.0056724.e259&representation=PNG journal.pone.0056724.e260&representation=PNG). The inter-situational difference was significantly different amongst the groups with journal.pone.0056724.e261&representation=PNG. In comparison with the pathological group, the control group had 3 times bigger excursions in situation journal.pone.0056724.e262&representation=PNG, and 6.5 times bigger excursions in the situation journal.pone.0056724.e263&representation=PNG.

In addition, the measurements showed great motion of the posterior diaphragm part than of the anterior part. Injournal.pone.0056724.e266&representation=PNG, the antero-posterior ratio was journal.pone.0056724.e267&representation=PNG within the control group and journal.pone.0056724.e268&representation=PNG within the pathological group. In journal.pone.0056724.e269&representation=PNG, the control group raised the range of the posterior part to journal.pone.0056724.e270&representation=PNG mm, resulting in an antero-posterior ratio of journal.pone.0056724.e271&representation=PNG. The pathological group, by contrast, raised the range in the anterior area and reduced the range in posterior area, resulting in an antero-posterior ratio of journal.pone.0056724.e272&representation=PNG.

Om hvordan pusten reagererer annerledes ved ryggsmerter:

We concluded that there was slower and deeper respiratory motion (parameters journal.pone.0056724.e362&representation=PNG) for both observed situations. In addition, after the postural demands rose in situation journal.pone.0056724.e363&representation=PNG, the breathing speed increased significantly (journal.pone.0056724.e364&representation=PNG) in the pathological group. In the same manner the breath depth (journal.pone.0056724.e365&representation=PNG) lessened significantly (journal.pone.0056724.e366&representation=PNG) in the pathological group. There were bigger postural moves in the control group, and they remained bigger in both situations, rising equally for each group.

Ved ryggsmerter er diafragma høyere opp i kroppen og lungene blir mindre:

The inclination of the diaphragm was greater (i.e. it was more verticalized) in the control group. The pathological group had the diaphragm placed significantly higher in the trunk, as indicated by the journal.pone.0056724.e372&representation=PNG parameter.

Om forholdet mellom diafragma og smerte, hd er høyden på diafragma, jo høyere jo mer smerte:

Diaphragm height were the only diaphragm parameter which was statistically significantly correlated (p = 0.0035) with the subjects’ low back pain indicated during the month before imaging. Pearson correlation coefficient was 0.67.

Om hvor mye diafragma beveger seg:
In the results section, we concluded that there is a statistically significant difference in the range of motion (ROM) of the diaphragm. A two and three times greater ROM was noted in the control group, than in the pathological group in situations journal.pone.0056724.e379&representation=PNG and journal.pone.0056724.e380&representation=PNG. In addition, the average diaphragm excursions journal.pone.0056724.e381&representation=PNG (central part) in situation journal.pone.0056724.e382&representation=PNG were journal.pone.0056724.e383&representation=PNG mm in the control group and journal.pone.0056724.e384&representation=PNGmm in the pathological group. In situation journal.pone.0056724.e385&representation=PNG, journal.pone.0056724.e386&representation=PNG was journal.pone.0056724.e387&representation=PNG mm in the control group and journal.pone.0056724.e388&representation=PNG mm in the pathological group.

We observed that the diaphragm was significantly higher for the pathological group. This may be a mechanism by which the pathological group was able to keep the diaphragm excursions more evenly spread after the postural demands increased.

Diafragma beveger seg normalt mer på baksiden:
We also observed that the diaphragm was more contracted in the posterior part for the control group. Diaphragm inclination measurements showed significant lowering of the posterior part of the diaphragm relative to the anterior part of the diaphragm for the control group. The pathological group kept the diaphragm in a more horizontal position.

Suwatanapongched [43]concluded that there was flattening of the diaphragm in the older population in his study. Our results did not show any significant age-related correlation of diaphragm flatness. Instead, the only significant correlation that we observed was between diaphragm height and the LBP intensity of the pathological group during the month before the measurements were made.

Jo høyere opp diafragma er, jo vanskeligerere blir den å bevege:
We assume that this diaphragm bulging is due to worse ability to contract the diaphragm properly. To the best of our knowledge, there are no results in the literature for measurements of diaphragm flatness in subjects suffering from LBP. Worse ability to contract the diaphragm in the pathological group is also supported by the significantly higher position in the trunk.

No correlation was concluded between measured parameters and pain intensity except for bulging (i.e. long term pain) of the diaphragm, as was discussed above. The results indicate that, as the pain is long term, the patients do not change their respiratory patterns according to fluctuations in the chronic LBP.

The significant differences in the harmonicity of the diaphragm motion observed in this study indicate changes in the central nervous system related to diaphragm function in subjects with pathological spinal findings suffering from various intensities of chronic low back pain. Low back pain is a wide-spread and widely studied phenomenon. Alternating respiratory patterns and anatomical changes in the diaphragm have been assessed in LBP subjects. Studies concluding increased susceptibility to pain and injury [1], [13], [49] identified differences in muscle recruitment in people suffering from LBP. Janssens [50] used fatigue of inspiratory muscles, and observed altered postural stabilizing strategy in healthy subjects. Jenssens also observed non-worsening stabilization with an already altered stabilizing strategy in subjects suffering from LBP. Grimstone [51] measured respiration-related body imbalance in subjects suffering from LBP, observing worse stability in subjects with LBP. Kolar [44] investigated differences in diaphragm contractions between healthy subjects and LBP subjects. He observed lesser contractions in the posterior part of the diaphragm while the postural demands on the lower limbs increased, and he suspected that intra-abdominal pressure lowering might be the underlying mechanism of LBP. Roussel [34] assessed the altered breathing patterns of LBP subjects during lumbopelvic motor control tests, concluding that some subjects used an altered breathing pattern to provide stronger support for spinal stability.
In our measurements, we did not observe the same diaphragm excursions in the posterior part of the diaphragm for healthy subjects and for subjects suffering from LBP as were observed by[44]. The excursions were reduced in the pathological group. In contrast with Kolar’s findings[44], we concluded that there was also lowering of the diaphragm inspiratory position in the pathological group in situation journal.pone.0056724.e399&representation=PNG. Our measurements support the hypothesis of less diaphragm contraction in the pathological group, with a significant correlation between diaphragm bulging and the intensity of the patient’s low back pain.

Om hvordan magemuskler er nødvendig for diafragma stabilitet:
In the pathological group, the abdominal muscles lack the ability to hold the ribs in lower position. For this reason, the insertion parts of the diaphragm are not fixed and the diaphragm muscle changes its activation. The diaphragm is disharmonic in its motion, which causes problems with providing respiration and at the same time retaining abdominal pressure. The muscle principle for spine stabilization is therefore violated, and is replaced by a substitute model, which tends more easily toward the emergence of low back pain, spine degeneration or disc hernia.

Reversed causation is always a possibility, i.e. it is possible that the diaphragm behavior is changed in order to stabilize the spine after the deep intrinsic spinal muscles fail. During these changes, breathing patterns may occur, e.g. breath holding and decreased diaphragm excursions.

Our study shows a way to compare the diaphragm motion within the group of controls without spinal findings and those who have a structural spinal finding, e.g. a hernia, etc., not caused by an injury. In this way, we confirm our experience of the influence of the diaphragm on spinal stability and respiration. The control group show a bigger range of diaphragm motion with lower breathing frequency. The diaphragm also performs better harmonicity (coordination) within its movement. The postural and breathing components are better balanced. This fact is very important for maintaining the intraabdominal pressure, which helps to support the spine from the front. For this reason, it plays a key role in treating back pain, hernias, etc. In the group of controls we also found a lower position of the diaphragm while it was in inspiration position in tidal breathing and also while being loaded. These facts also support the ability of the diaphragm to play a key role in maintaining the good stability of the trunk. It is also important that we are able to separate the phases of diaphragm movement. This supports both the postural function and the breathing function of this muscle due to MR imaging.

Ukjent sin avatar

Disorders of breathing and continence have a stronger association with back pain than obesity and physical activity

En studie som ofte blir referert til fordi den nevner at ryggsmerte har en større korrelasjon til pust og inkontinens enn til overvekt og aktivitet. Manglende aktivitet i pustemusklene bidrar til minket kontroll over ryggmuskler.

http://svc019.wic048p.server-web.com/AJP/vol_52/1/AustJPhysiotherv52i1Smith.pdf

«Unlike obesity and physical activity, disorders of continence and respiration were strongly related to frequent back pain. This relationship may be explained by physiological limitations of coordination of postural, respiratory and continence functions of trunk muscles.»

» Notably, control of the trunk is dependent on activity of muscles such as the diaphragm (Hodges et al 1997), transversus abdominis (Hodges et al 1999), and pelvic floor muscles (Hodges et al 2002), and reduced postural activity of these muscles has been argued to impair the mechanical support of the spine.»

» Our findings provide initial support for the hypothesis that compromised postural control of these muscles, secondary to disease- specific challenges, may contribute to the development of back pain.»