Ukjent sin avatar

Lions Mane sopp

Lions Mane er en matsopp som har vist seg å kunne stimulere NGF (Nerve Growth Factor) og bidra til å reparere skader på nerver, samt dempe betennelse og beskytte mot skader på nerver. En sært interessant medisinsk sopp som har noe forskning bak seg.

Examine.com sin komplette gjennomgang: http://examine.com/supplements/Yamabushitake/

Nevner at man kan ta 3000mg daglig.

Medicinal properties of Hericium erinaceus and its potential to formulate novel mushroom-based pharmaceuticals.

Hericium erinaceus (Bull.: Fr.) Pers., a medicinal mushroom, activates peripheral nerve regeneration.

H. erinaceus is capable of promoting peripheral nerve regeneration after injury.

Anti-inflammatory activity of mycelial extracts from medicinal mushrooms.

These results indicate that extracts from medicinal mushrooms exhibited anti-inflammatory activity that might be attributable to the inhibition of NO generation and can therefore be considered a useful therapeutic and preventive approach to various inflammation-related diseases.

Hericium erinaceus (Bull.: Fr) Pers. cultivated under tropical conditions: isolation of hericenones and demonstration of NGF-mediated neurite outgrowth in PC12 cells via MEK/ERK and PI3K-Akt signaling pathways.

Taken together, this study suggests that hericenone E potentiated NGF-induced neuritogenesis in PC12 cells via the MEK/ERK and PI3K/Akt pathways.

Protective effects of Hericium erinaceus mycelium and its isolated erinacine A against ischemia-injury-induced neuronal cell death via the inhibition of iNOS/p38 MAPK and nitrotyrosine. Hele studien her: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4200813/

These findings confirm the nerve-growth properties of Hericium erinaceus mycelium, which include the prevention of ischemic injury to neurons; this protective effect seems to be involved in the in vivo activity of iNOS, p38 MAPK and CHOP.

Hericium erinaceus (Yamabushitake): a unique resource for developing functional foods and medicines.

 In this article, we provide an overview of the biochemical and pharmacological studies on HE, especially of its antitumor and neuroprotective functions, together with a survey of recent developments in the chemical analysis of its polysaccharides, which comprise its major active components.

Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (HigherBasidiomycetes) from Malaysia.

In conclusion, the aqueous extract of H. erinaceus contained neuroactive compounds which induced NGF-synthesis and promoted neurite outgrowth in NG108-15 cells.

Ukjent sin avatar

Informasjon om Palmitoyletanolamide

Palmitoylethanolamide (PEA) er et svært interessant produkt som har mye forskning bak seg, men er svært lite kjent og lite tilgjengelig. I Italia, Spania og Tyskland selges det som «mat til medisinsk formål», mens i Nederland selges det som kosttilskudd, men da uten noen påstander knyttet til produktet.

Det kan bestilles fra Nederland her: http://www.rs4supplements.com/en/peapure-capsules-info

PEA er et naturlig fettstoff som kroppen produserer selv. Det finnes i mange matvarer, særlig i kjøtt, egg, soyabønner og andre peanøtter.

Kroppen produserer PEA spesielt ved betennelsestilstander, og man ser det øker i konsentrasjon lokalt der betennelsen er. PEA har en beskyttende rolle i en betennelsestilstand. Men om betennelsestilstandende vedvarer kan kroppens naturlige PEA brukes opp. Da får man mindre beskyttelse og det blir lettere å få andre plager eller vedvarende plager. Siden det er kosttilskudd må man regne med å bruke minst 2-3 måneder for å se om det hjelper.

PEA gjør at kroniske betennelsesreaksjoner lettere kan brytes slik at regenerering kan inntre igjen. PEA er spesielt interessant fordi det virker på nervetråder. Nevropati (ødelagte nervetråder) er en svært vanskelig tilstand å behandle, men PEA har potensiale til å være både et effektivt og bivirkningsfri tilskudd for å starte regenereringen av nervetråder. PEA er et endokannabinoid-lignende stoff. Man får alle de medisinske og smertedempende effektene lik kannabinoider, men uten noen form for rus.

Her er en lang rekke med studier som har blitt gjort på nevropati og PEA:

Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. (Free in PMC)

These results suggest that PEA-m could be considered as a promising and well-tolerated new treatment for symptomatology experienced by diabetic patients suffering from peripheral neuropathy.

Chronic idiopathic axonal neuropathy and pain, treated with the endogenous lipid mediator palmitoylethanolamide: a case collection. (Free in PMC)

In all these patients, PEA reduced pain significantly, without side effects. PEA can be administered in addition to other analgesics, without negative drug-drug interactions, or can be used as a stand-alone analgesic. Due to a favorable ratio between efficacy and safety, PEA should be considered more often as a treatment for neuropathic pain.

Palmitoylethanolamide is a disease-modifying agent in peripheral neuropathy: pain relief and neuroprotection share a PPAR-alpha-mediated mechanism. (Free in PMC)

These results strongly suggest that PEA, via a PPAR- α -mediated mechanism, can directly intervene in the nervous tissue alterations responsible for pain, starting to prevent macrophage infiltration.

Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series. (Free in PMC)

Probably due to the fact that PEA is an endogenous modulator as well as a compound in food, such as eggs and milk, no serious side effects have been reported, nor have drug-drug interactions.

Palmitoylethanolamide restores myelinated-fibre function in patients with chemotherapy-induced painful neuropathy.

In a severe condition such as painful neuropathy associated with multiple myeloma and chemotherapy, a safe substance such as PEA provides significant restoration of nerve function.

Use of palmitoylethanolamide in the entrapment neuropathy of the median in the wrist.

The data support the hypothesis of protection against inflammatory and neuropathic pain by PEA.

Palmitoylethanolamide in CNS health and disease.

Overall, the integration of these different modes of action allows PEA to exert an immediate and prolonged efficacious control in neuron signaling either on inflammatory process or neuronal excitability, maintaining cellular homeostasis.

Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain.

Collectively, the findings presented here propose that palmitoylethanolamide merits further consideration as a disease-modifying agent for controlling inflammatory responses and related chronic and neuropathic pain.

Mast cells, glia and neuroinflammation: partners in crime?

N-Palmitoylethanolamine has proven efficacious in mast-cell-mediated experimental models of acute and neurogenic inflammation.


Her er en rekke studier som har blitt gjort på betennelser og PEA:

Gastric bypass in morbid obese patients is associated with reduction in adipose tissue inflammationvia N-oleoylethanolamide (OEA)-mediated pathways.

Palmitoylethanolamide regulates development of intestinal radiation injury in a mast cell-dependent manner.

Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: involvement of CB₁ receptors and TRPV1 channels.

Palmitoylethanolamide inhibits rMCP-5 expression by regulating MITF activation in rat chronic granulomatous inflammation.

Palmitoylethanolamide and luteolin ameliorate development of arthritis caused by injection of collagen type II in mice.

An apPEAling new therapeutic for ulcerative colitis?

Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-α activation.

A new co-ultramicronized composite including palmitoylethanolamide and luteolin to prevent neuroinflammation in spinal cord injury.

Glia and mast cells as targets for palmitoylethanolamide, an anti-inflammatory and neuroprotective lipid mediator.

New insights in mast cell modulation by palmitoylethanolamide.

Ukjent sin avatar

Mitochondrial Uncoupling

Endelig har jeg begynt å forstå verdien i det de kaller Mitochondrial Uncoupling.

«Uncoupling» innbærer at mitokondriene produserer varme istedet for ATP. I denne prosessen produseres faktisk mer CO2 enn når mitokondriene produserer ATP (energi-molekyl). Overproduksjon av ATP skaper problemer i cellene. Jo mer ATP jo raskere vil cellen bli overstimulert og dø.

Det er «uncoupling» effekten som gir oss livsforlengelse. Jo større evne mitokondriene våre har til å bli «uncoupled», jo lenger vil vi leve.


 

Denne studien er en rapport fra et møte med 50 forskere som jobber med uncoupling. Den beskriver mye av det fysiologiske med 3 uncoupling proteiner, UPC1,UPC2 og UPC3. Det er UPC1 som gir termogenese(varme): http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1369193/

Uncoupling proteins: current status and therapeutic prospects

In bioenergetics, ‘uncoupling’ refers to any process through which energy released from the combustion of substrate (food) in the mitochondria is not conserved. The final steps in the oxidation of substrate are the transfer of electrons to oxygen, forming water, by the respiratory chain. The energy released is used by the respiratory chain to pump protons out of the mitochondria, as seen in Fig 1A. In most mitochondria, the majority of these protons re-enter through the ATP synthase, and the energy is used to synthesize ATP. However, if the protons re-enter by any other means, the mitochondria are considered to be uncoupled.

As energy in this process is transferred to heat and not stored as fat in the body, the activity of the uncoupling protein(s) can be viewed as an anti-obesity mechanism—a possibility that has attracted much attention, as both pharmaceutical companies and the general public are looking for easy ‘slimming’ agents.

 

Whether UCP1 needs an ‘activator’ is also a debated issue—however, it is agreed that an activator is necessary in the cell, with most scientists suggesting that fatty acids are good candidates. (Notat: fruktose er også en «aktivator»)

Uncoupling (measured as thermogenesis) is only observed when the cells are adequately stimulated, for example, by norepinephrine (Fig 1B).

However, it was the opinion of several participants at the meeting (in particular, E. Rial, Madrid, Spain, and J. Nedergaard, Stockholm, Sweden) that fatty acids do not participate in the uncoupling process. Instead, the fatty acids function only as anti-inhibitors by relieving the inhibition caused by the purine nucleotides (ATP and ADP) present in the cells—and experimentally by GDP in isolated brown-adipose mitochondria studies (Fig 1B)—prinicpally in accordance with suggestions by Nicholls from the 1970s.

The most discussed hypothesis at the meeting was that UCP2 and UCP3 do indeed function as uncoupling proteins, but only when oxidative stress (superoxide production) can be ameliorated by their activity. This is generally presented as the ‘mild-uncoupling’ hypothesis (Fig 2). It was debated whether this type of ‘not thermogenic but still membrane potential lowering activity’ is bioenergetically possible.

However, the oxidative-stress protection function is supported by the observation that macrophages from UCP2-null mice produce more superoxide, which results in a chronic activation of the NF-κB system with expected inflammatory consequences (S. Collins, Research Triangle Park, NC, USA). In addition, mice without UCP2 are more susceptible than normal mice to chemically induced colon cancer.

Brand suggested that the UCPs—whether or not this includes UCP1 is still open—specifically protect against oxidative damage caused by fatty acids, particularly polyunsaturated fatty acids from membrane phospholipids. These fatty acids can be attacked by mitochondrially-generated superoxide that converts them into 4-hydroxy-2-nonenal (HNE) and then interacts with the UCPs to make them able to conduct protons (or an equivalent). This ‘mild uncoupling’ would decrease the membrane potential and thus diminish the rate of production of superoxide; that is, this would be a self-regulating protective system.

Uncoupling protein 1. In mammals, UCP1 is found only in brown adipose tissue.

Uncoupling protein 2. UCP2 mRNA has been detected in macrophages, lymphocytes, thymocytes, pulmonary cells, enterocytes, adipocytes, pancreatic β-cells and certain neurons and, at a lower level, in liver, muscle and kidney cells. In the brain, UCP2 gene expression is generally low but high levels of UCP2 mRNA have been found in some regions, such as the limbic system and particular subdomains of the hypothalamus (D. Richard, Quebec, Canada).

Uncoupling protein 3. UCP3 expression levels in the skeletal muscle of animals or humans respond to changes in fatty-acid flux (F. Villarroya, Barcelona, Spain; Harper; Dulloo; Schrauwen).

The thyroid hormone tri-iodothyronine has a positive role in the control of UCP3 expression (F. Goglia, Benevento, Italy).


 

Denne studien fra 2002 beskriver de viktigste prisinippene for hva det vil si å ha evnen til å «uncouple» mitokondrienes energiproduksjon:

Living Fast, Dying When? The Link between Aging and Energetics

Her beskrives prosessen med proton-flyt (H+):

During oxidative phosphorylation electrons from reduced substrates are picked up by ubiquinone (Q) on complex 1 of the mitochondrial membrane. As these electrons are passed from complex 1 down the cytochromes the released energy is used to pump protons across the inner mitochondrial membrane creating a protonmotive force. Finally, in complex 4 the electron combines with a proton and oxygen to form water. The hydrogen ions pass back across the membrane via ATP synthase, resulting in the generation of ATP from ADP and inorganic phosphate, although occasionally protons leak back through the membrane without the creation of ATP, either as a membrane leak or via a specialized protein called an uncoupling protein (UCP), which allows the proton to pass uncoupled from the generation of ATP, but resulting in release of the stored energy as heat. Occasionally, however, this process goes wrong and the oxygen reacts with a reduced form of Q, called ubisemiquinone (QH), which results in generation of a superoxide free radical (O2) (6063).

Animals can reduce the levels of protonmotive force by increasing the extent of uncoupling in their mitochondria. To continue to generate ATP requires elevated oxygen consumption, although the net production of free-radical species is diminished. The animals uncouple respiration to increase their survival (63). This effect is diametrically opposed to the prevailing notion that increasing uncoupling should lead to an increase in free-radical production because of the elevated oxygen consumption (95). Our data are consistent with a protective effect of uncoupling respiration and, consequently, our current efforts are directed at resolving whether those MF1 mice with high-energy expenditures have more uncoupled mitochondria, or elevated levels of protection and repair processes.

http://m.jn.nutrition.org/content/132/6/1583S.long


 

Denne studiens overskrift (fra 2004) sier alt:

Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer

Mice in the upper quartile of metabolic intensities had greater resting oxygen consumption by 17% and lived 36% longer than mice in the lowest intensity quartile. Mitochondria isolated from the skeletal muscle of mice in the upper quartile had higher proton conductance than mitochondria from mice from the lowest quartile. The higher conductance was caused by higher levels of endogenous activators of proton leak through the adenine nucleotide translocase and uncoupling protein-3. Individuals with high metabolism were therefore more uncoupled, had greater resting and total daily energy expenditures and survived longest – supporting the ‘uncoupling to survive’ hypothesis.

The work we performed on mitochondria extracted from the second and third cohorts of mice, in combination with the first cohort [Fig. 1] where we showed that mice with higher metabolic intensities lived longest, provide greater support for the ‘uncoupling to survive’ hypothesis than for the ‘rate of living-free-radical damage’ hypothesis, at the level of individual phenotypic differences in metabolic intensity. Since we used an outbred strain kept in constant environmental conditions, presumably these phenotypic differences have a genetic component at their origin; this conclusion is supported by the fact that the same association between longevity and metabolic intensity is also observed across inbred strains (Storer et al., 1967).

http://onlinelibrary.wiley.com/doi/10.1111/j.1474-9728.2004.00097.x/full


 

Denne studien fra 1993 nevner at «uncoupled» mitkondria produserer mer CO2:

Characterization of the folate-dependent mitochondrial oxidation of carbon 3 of serine.

In contrast, CO2 production was greatest in uncoupled mitochondria and lowest in respiratory-inhibited mitochondria.

http://www.ncbi.nlm.nih.gov/pubmed/8485144/

Ukjent sin avatar

Metabolic Fingerprint of Dimethyl Sulfone (DMSO2) in Microbial-Mammalian Co-metabolism.

Nevner mye om hvordan MSM produseres naturlig i kroppen av bakterier som omformer metionin. Spesielt dette avsnittet om hvordan Chrons og IBS har mangel på svovel i tarmen fordi de ikke greier å omforme metionin.

http://www.ncbi.nlm.nih.gov/pubmed/25245235

There is evidence that supports the existence of an altered co- metabolic pathway of methionine in inflammatory bowel disease (IBD) patients. For example, the fecal metagenome of ileal Crohn’s disease (CD) patients exhibits a significant increase in genes related to cysteine and methionine metabolism compared with that in healthy subjects.39 Additionally, fecal sulfur-containing compounds (such as MT, DMS, methyl propyl sulfide, and methyl-2-propenyl disulfide) are significantly lower in CD patients compared with that in healthy subjects, whereas H2S production is higher.40,41 Interestingly, Dawiskiba et al. reported that serum DMSO2 is significantly lower in IBD patients (24 UC and 19 CD patients) compared with that in healthy controls.42 It is therefore possible that these intestinal diseases are associated with both a disruption of microbial methionine degradation as well as the host detoxification pathways (discussed in Section 4.2) that reshape the sulfur-compound distribution in the host metabolic profile.

Ukjent sin avatar

Johannesurt olje mot hud smerter og skader

Denne beskriver alt om hvordan johannesurt olje kan brukes på huden:

https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0033-1351019

Topical St. Johnʼs wort preparations such as oils or tinctures are used for the treatment of minor wounds and burns, sunburns, abrasions, bruises, contusions, ulcers, myalgia, and many others.

 

Denne beskriver hvordan johannesurt olje øke helbredelsen av sår i huden og reduserer betennelsesreaksjoner.

Klikk for å få tilgang til 54041310531059.pdf

Although the anti-inflammatory effect of the Hypericum extracts was attributed mainly to the inhibitory action of quercetin upon the signal transduction pathway, recent experiments reveal an important role of hyperforin, demonstrating an inhibitory effect upon the lymphocyte reaction at the level of the epidermal cells and upon the T-lymphocyte proliferation [16]. Hyperforin also interferes with prostanoid generation in biological systems, particularly with key enzymes participating in prostaglandin (PG) E2 biosynthesis, i.e., cyclooxygenases (COX)-1/2 and microsomal PGE2 synthase (mPGES)-1 which play key roles in inflammation and tumorigenesis [17]. On the other hand, hyperforin is one of the natural compounds with a strong inhibitory effect upon cyclooxygenase-1 (COX-1) and lipoxygenase-5 (LOX-5) [18]. This dual mechanism offers the rational basis for the traditional use of St. John’s wort in inflammatory dermal disorders.

The wound healing process is evident in all the three types of dermal affection: incision, excision, and thermal burn.

Conclusions

The clinical and histopathological results, along with the wound contraction rate and period of epithelialization, demonstrate the wound-healing effect of the novel St. John’s wort ointment in linear incisions, circular excisions and thermal burns. The results are clearly superior to those cited in other studies.

 

Ukjent sin avatar

Palmitoyletanolamide

Denne beskriver det meste om historien og virkningsmekanismene til Palmitoyletanolamide:

Klikk for å få tilgang til Lambert-2002-1.pdf

Denne artikkelen forklarer på enkelt vis hvordan det fungerer:

http://www.cortjohnson.org/blog/2014/09/19/palmitoylethanolamide-pea-medical-food-fibromyalgia-chronic-fatigue-syndrome-mecfs/

Studie fra Hassellink fra 2013. Han er den forskeren som har brakt PEA frem i lyset igjen:

http://www.hindawi.com/journals/iji/2013/151028/

 

Ukjent sin avatar

Pain-related fear, lumbar flexion, and dynamic EMG among persons with chronic musculoskeletal low back pain.

Denne studien nevner at frykt for bevegelse gjør at ryggradens muskler ikke greier å slappe av ordentlig når ryggen ikke er i bevegelse. Bildet neders viser hvordan ryggradens muskler slapper av når du står og når du henger fremover (full static flxion), og spenner seg kun når du beveger ryggraden.

Frykten for hva som skjer med opprettholder muskelspenninger og hemmer restitusjon etter f.eks. en kink eller skade. Derfor er det så viktig at terapeuter ikke skaper frykt for ryggradens bevegelser i sine klienter.

http://www.ncbi.nlm.nih.gov/pubmed/14770044

Abstract

OBJECTIVES:

The purpose of this study was to examine the relationship between pain-related fear, lumbar flexion, and dynamic EMG activity among persons with chronic musculoskeletal low back pain. It was hypothesized that pain-related fear would be significantly related to decreased lumbar flexion and specific patterns of EMG activity during flexion and extension.

STUDY DESIGN:

Data was obtained from subjects who, on a single day, completed self-report measures of pain and pain-related fear, and were interviewed to determine demographic and pain information. Subjects then underwent a dynamic EMG evaluation for which they were asked to stand, then bend forward as far as possible, stay fully flexed, and return to standing. Lumbar EMG and angle of flexion were recorded during this time. A flexion-relaxation ratio (FRR) was computed by comparing maximal EMG while flexing to the average EMG in full flexion.

SUBJECTS:

Seventy-six persons with chronic musculoskeletal low back pain.

RESULTS:

Zero-order correlations indicated that pain-related fear was significantly related to reduced lumber flexion (r = -0.55), maximum EMG during flexion (r = -0.38) and extension (r = -0.51), and the FRR (r = -0.40). When controlling for pain and demographic factors, pain-related fear continued to be related to reduced lumbar flexion. Using a path-analytic model to examine whether angle of flexion mediated the relationship between fear and EMG activity, the models examining maximal EMG during flexion and extension supported the notion that pain-related fear influences these measures indirectly through its association with decreased range of motion. Conversely, pain-related fear was independently related to higher average EMG in full flexion, while angle of flexion was not significantly related. Pain-related fear was directly related to a smaller FRR, as well as indirectly through angle of flexion.

CONCLUSIONS:

Pain-related fear is significantly associated with reduced lumbar flexion, greater EMG in full flexion, and a smaller FRR. The relationship between pain-related fear and EMG during flexion and extension appears to be mediated by reduced lumbar flexion. These results suggest that pain-related fear is directly associated with musculoskeletal abnormalities observed among persons with chronic low back pain, as well as indirectly through limited lumbar flexion. These musculoskeletal abnormalities as well as limited movement may be involved in the development and maintenance of chronic low back pain. In addition, changes in musculoskeletal functioning and flexion associated with pain-related fear may warrant greater attention as part of treatment.

journal.pone.0039207.g002

Ukjent sin avatar

Nutritional essentiality of sulfur in health and disease.

Denne beskriver det aller meste om svovel og hvorfor det er et viktig næringsstoff å fokusere på. Den nevner bl.a. at svovel tilskudd, f.eks. MSM, går inn i TBS (total body sulfur pool) som en svovelkilde for glutation. Sammen med metionin og cystein fra maten.

Den nevner også hvordan stress og betennelser skaper en større «turnover» av proteiner, som ofte ikke samsvarer med inntaket av proteiner. Man blir da kronisk på underskudd av svovel og proteiner. Dette forklarer hvorfor proteintilskudd er viktig ved betennelsestilstander og stress tilstander som f.eks. kronisk smerte.

Svovel og Nitrogen har et forhold på 1:14 og er tett sammenkoblet. Når nitrogen forsvinner forsvinner også svovel. Muligens kan man måle svoveltilgjengeligheten i kroppen ved å måle nitrogen med urinstix.

http://www.ncbi.nlm.nih.gov/pubmed/23815141

Hele artikkelen er i min dropbox.

HYPERHOMOCYSTEINEMIA AS A RESPONSE TO STRESS

N and S maintain tightly correlated ratios in tissues of both healthy subjects8 and diseased patients.167 Acute stressful conditions of any cause unleash a shower of many cytokines that fulfill a myriad of autocrine, para- crine, and endocrine functions.168 As a consequence, enhanced tissue proteolysis throughout the body ensues, allowing the redirection of AA residues toward the pref- erential overproduction of acute-phase reactants and repair proteins by the liver and at the site of injury.169 The rate of protein degradation usually exceeds that of protein undergoing neosynthesis,170,171 leading to a negative N balance with subsequent depletion of TBN reserves. The increased urinary excretion of N catabolites (mainly urea, but also creatinine, NH4+, 3-CH3-histidine, and other minor compounds) demonstrates that both metabolic and structural tissues participate in the adap- tive responses to injury in proportion to the magnitude of initial impact.31,170,171 In very aggressive conditions (burns) affecting adult men, urinary output of N may be as high as 250 g of N per week, which corresponds to a loss of 6–7 kg of LBM31 or 12–14% of metabolically active tissues.30 Major stressful disorders are associated with massive urinary excretion of S,167,172 which depletes endogenous pools of TBS. In stressors of medium severity (bone fracture), S spillover has been estimated to be 17 g of S per week, or more than 10% of TBS body stores. Interestingly enough, measurement of S and N urinary losses yields values very close to the 1:14 ratio that char- acterizes mammalian tissues,8,167 indicating that TBN and TBS pools exhibit concomitant degradation patterns throughout the course of injury.

Ukjent sin avatar

The Truth About Exercise

Dokumentar om høy-intensitetstrening:

Mer om HIIT (Peak 8) fra Dr.Mercola her:

Introvideo til Peak 8 prinsippet for trening: http://youtu.be/BT5hRYXmxSE
Artikkel om Peak8 treningen: http://fitness.mercola.com/sites/fitness/archive/2012/02/10/phil-campbell-interview.aspx
Les artikkelen og se den nederste videoen for å få et inntrykk av hvor intenst treningen skal være de 30sek som intervallene varer.