Ukjent sin avatar

High Energy Diets-Induced Metabolic and Prediabetic Painful Polyneuropathy in Rats

Nevner hvordan høy-fett høy-karbo forværrer nevropati (ødelagte nerver), men høy-fett høy-karbo høy-salt ser ut til å dempe smertene noe.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581455/

Conclusions

In the current study, early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (IFG) could be induced by high energy (high-fat and high-sucrose) diets in rats which later developed painful polyneuropathy that was characterized by myelin breakdown and LMF loss in both peripheral and central branches of primary afferent neurons. However, SMF and UMF were far less damaged in the same rats. The phenomenon that the high energy diets only induce mechanical, but not thermal, pain hypersensitivity may reflect a selective damage to LMF, but not to the SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets further, but paradoxically high salt consumption may improve, at least temporarily, chronic pain perception in these animals.

We have therefore established a strong link between high-energy/high-salt diet induced metabolic syndrome and prediabetes which results in relatively selective LMF damage in both the PNS and CNS that in turn can result in neuropathic pain. These results have a profound impact on patient welfare relative to diet choice, not just for T2DM onset, but also for its associated neuropathic symptoms.

Ukjent sin avatar

Melatonin prevents mitochondrial dysfunction and insulin resistance in rat skeletal muscle.

Om hvordan melatonin beskytter mitokondriene i muskler og insulin resistens.

Teodore et.al. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24981026

Abstract

Melatonin has a number of beneficial metabolic actions and reduced levels of melatonin may contribute to type 2 diabetes. The present study investigated the metabolic pathways involved in the effects of melatonin on mitochondrial function and insulin resistance in rat skeletal muscle. The effect of melatonin was tested both in vitro in isolated rats skeletal muscle cells and in vivo using pinealectomized rats (PNX). Insulin resistance was induced in vitro by treating primary rat skeletal muscle cells with palmitic acid for 24 hr. Insulin-stimulated glucose uptake was reduced by palmitic acid followed by decreased phosphorylation of AKT which was prevented my melatonin. Palmitic acid reduced mitochondrial respiration, genes involved in mitochondrial biogenesis and the levels of tricarboxylic acid cycle intermediates whereas melatonin counteracted all these parameters in insulin-resistant cells. Melatonin treatment increases CAMKII and p-CREB but had no effect on p-AMPK. Silencing of CREB protein by siRNA reduced mitochondrial respiration mimicking the effect of palmitic acid and prevented melatonin-induced increase in p-AKT in palmitic acid-treated cells. PNX rats exhibited mild glucose intolerance, decreased energy expenditure and decreased p-AKT, mitochondrial respiration, and p-CREB and PGC-1 alpha levels in skeletal muscle which were restored by melatonin treatment in PNX rats. In summary, we showed that melatonin could prevent mitochondrial dysfunction and insulin resistance via activation of CREB-PGC-1 alpha pathway. Thus, the present work shows that melatonin play an important role in skeletal muscle mitochondrial function which could explain some of the beneficial effects of melatonin in insulin resistance states.

Ukjent sin avatar

An acid-sensing ion channel that detects ischemic pain

Nevner mange interessante ting om hvordan lav pH som følge av CO2 ikke er det samme som lav pH som følge av f.eks. melkesyre(laktic acid). De sier at melkesyre og ATP må være sammen for å gjøre pH-sensitive nerver aktive. Noe som skjer ved hard trening hvor ATP lekker ut fra muskel cellene. Laktat aktiverer ASICs umiddelbart, mens ATP er «treg» og det skjer i løpet av 30-60 sekunder. Kanskje denne overaskelsen i nervesystemet er utgangspunktet for sentralsensiteringen som skjer ved DOMS?

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2005001100001

Paradox number 2 answered: coincident detection of lactate, ATP and acid

We are left with a seemingly more profound paradox: how can acid be relevant to ischemic pain if no pain is caused by metabolic events such as hypercapnia that can cause the same kind of pH change that occurs during a heart attack? Pan et al. (13) demonstrated the paradox most convincingly. They measured the pH on the surface of the heart when a coronary artery was blocked and found that it dropped from pH 7.4 to 7.0. Then they reperfused the artery and had the animal breathe carbon dioxide until the resulting hypercapnia dropped the pH of the heart to 7.0. The blockade of the artery caused increased firing of sensory axons that innervate the heart, but the hypercapnia did not. How can this observation be reconciled with their other result (see above) that buffering extracellular pH greatly diminishes axon firing during artery occlusion? The simple interpretation is that protons must be necessary to activate the sensory axons, but cannot by themselves be sufficient. In other words, something must act together with protons to activate the axons.

We searched for compounds released during ischemia that might act together with protons to activate ASIC3. We found two: lactate and adenosine 5′-triphosphate (ATP). When the channel is activated by pH 7.0 in the presence of 15 mM lactate, the resulting current is 80% greater than when lactate is absent (Figure 6). These are physiological values. Under resting conditions, extracellular lactate is about 1 mM in skeletal muscle; after extreme ischemic exercise it rises to 15-30 mM (26). The increased current in the presence of lactate makes the channel better at sensing the lactic acidosis that occurs in ischemia than other kinds of acidosis such as the carbonic acidosis when an animal breathes CO2.

Extracellular ATP rises to >10 µM when a muscle contracts without blood flow (27). We find that a transient appearance of such extracellular ATP can greatly increase ASIC3 current even for minutes after the ATP is removed (Figure 7).

Though they both increase ASIC3 current, lactate and ATP have qualitatively different effects. Lactate acts immediately and must be present for the ASIC current to be enhanced. ATP increases the current slowly – a peak is reached between 15 s and 1 min after ATP is applied – and the effect persists for minutes after ATP is removed. Also, lactate acts on every cell that expresses ASIC3 whereas ATP acts on some cells but not others. We find that lactate acts by altering the basic gating of the channel, which, surprisingly, involves binding of calcium in addition to protons (28). In contrast, the ATP binding site must not be the ASIC3 channel itself; there are a variety of purinergic receptors, some of which are ion channels and some of which are G-protein-coupled receptors. We are presently asking if any of these known receptors might mediate ATP modulation of ASIC3.

Ukjent sin avatar

HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery.

HIF er et signalmolekyl som aktiverer angiogenese, altså produksjonen av nye blodkar. Ved lave oksygennivåer økes HIF. Dette kan komme fra trening, men også fra øvelser med å holde pusten.

http://www.ncbi.nlm.nih.gov/pubmed/25208310

Abstract

BACKGROUND:

Cardiovascular patients suffer from reduced blood flow leading to ischemia and impaired tissue metabolism. Unfortunately, an increasing group of elderly patients cannot be treated with current revascularization methods. Thus, new treatment strategies are urgently needed. Hypoxia inducible factors (HIFs) upregulate the expression of angiogenic mediators together with genes involved in energy metabolism and recovery of ischemic tissues. Especially, HIF-2α is a novel factor and only limited information is available about its therapeutic potential.

METHODS:

Gene transfers with adenoviral HIF-1α and HIF-2α were done into the mouse heart and rabbit ischemic hindlimbs. Angiogenesis was evaluated by histology. Left ventricle function was analysed with echocardiography. Perfusion in rabbit skeletal muscles and energy recovery after electrical stimulation-induced exercise were measured with ultrasound and 31 P-magnetic resonance spectroscopy (31 P-MRS), respectively.

RESULTS:

HIF-1α and HIF-2α gene transfers increased capillary size up to 5-fold in myocardium and ischemic skeletal muscles. Perfusion in skeletal muscles was increased by 4-fold without edema. Especially AdHIF-1α enhanced the recovery of ischemic muscles from electrical stimulation-induced energy depletion. Special characteristic of HIF-2α gene transfer was a strong capillary growth in muscle connective tissue and that HIF-2α gene transfer maintained left ventricle function.

CONCLUSIONS:

We conclude that both AdHIF-1α and AdHIF-2α gene transfers induced beneficial angiogenesis in vivo. Transient moderate increases in angiogesis improved energy recovery after exercise in ischemic muscles. This study shows for the first time that a moderate increase in angiogenesis is enough to improve tissue energy metabolism which is potentially a very useful feature for cardiovascular gene therapy.

Ukjent sin avatar

Postural function of the diaphragm in persons with and without chronic low back pain.

Denen Studien beskriver på en svært god måte hvordan diafragmas posisjon og bevegelse kan relateres til ryggplager. Når diafragm får lite bevegelse, spesielt i de fremre og mitre delene, blir vinkelen diafragma står i kroppen brattere. Dette kobles til ryggsmerter. Jo brattere vinkelen er, jo større sjangse for ryggsmerter. Bildene viser hvordan diafragma beveger seg mindre og står høyere opp i kroppen hos det med kroniske ryggsmerter. Den viser også hvordan største delen av bevegelsen i diafragma skjer på bakre del, ikke fremre eller midtre, men ved korsryggplager blir det minst bevegelse i fremre og midtre del, mens bakre del har lige god bevegelse. Spesielt interessant å legge merke til er at den viser ingen forskjell mellom Control og Patients diafragma bevegelse under Tidal Breathing (abdominal pust). Dette viser at for å øke styrke og bevegelse i diafragma må man ta i mer. Abdominal pust er ikke diafragma trening.

http://www.ncbi.nlm.nih.gov/pubmed/22236541/

Hele her: http://www.rehabps.cz/data/JOSPT.pdf

Abstract

STUDY DESIGN:

A case-control study.

OBJECTIVES:

To examine the function of the diaphragm during postural limb activities in patients with chronic low back pain and healthy controls.

BACKGROUND:

Abnormal stabilizing function of the diaphragm may be an etiological factor in spinal disorders. However, a study designed specifically to test the dynamics of the diaphragm in chronic spinal disorders is lacking.

METHODS:

Eighteen patients with chronic low back pain due to chronic overloading, as ascertained via clinical assessment and magnetic resonance imaging, and 29 healthy subjects were examined. Both groups presented with normal pulmonary function test results. A dynamic magnetic resonance imaging system and specialized spirometric readings were used with subjects in the supine position. Measurements during tidal breathing (TB) and isometric flexion of the upper and lower extremities against external resistance with TB were performed. Standard pulmonary function tests, including respiratory muscle drive (PI(max) and PE(max)), were also assessed.

RESULTS:

Using multivariate analysis of covariance, smaller diaphragm excursions and higher diaphragm position were found in the patient group (P<.05) during the upper extremity TB and lower extremity TB conditions. Maximum changes were found in costal and middle points of the diaphragm. A 1-way analysis of covariance showed a steeper slope in the middle-posterior diaphragm in the patient group both in the upper extremity TB and lower extremity TB conditions (P<.05).

CONCLUSION:

Patients with chronic low back pain appear to have both abnormal position and a steeper slope of the diaphragm, which may contribute to the etiology of the disorder.

 

Perhaps the most clinically important finding of this study concerns the ab- normal coordination of the diaphragm in the patient group during inspiration with postural tasks. This impairment was demonstrated by reduced move- ment of the diaphragm in the anterior and middle portion, while the posterior (crural) part moved in the same manner as in the control group. This pattern of diaphragmatic recruitment resulted in a steeper angle in the middle-posterior part of the diaphragm (FIGURE 4), which may exacerbate the symptomology of chronic low back pain by increasing the anterior shear forces on the ventral region of the spinal column.

Poor coordination of particular di- aphragmatic parts in the patients (points B and C) resulted in an asymmetric dia- phragmatic activation during inspiration, as demonstrated by a steeper slope of the crural part of the diaphragm. Evidently, limited motion of the costal part may result in a more domed inspiratory diaphragmatic position.

In healthy subjects, the diaphragm is able to perform the dual task (trunk stability and respiration) when trunk stability is challenged.19 Generally, dur- ing any body movement, with activation of the extremities during weight-bearing or weight-lifting activities and transi- tional movements, there is simultaneous spinal bracing and transdiaphragmatic pressure elevation.11,22 Intra-abdominal pressure increases, with a simultaneous decrease of intrapleural pressure, during a contraction of both the posterior (cru- ral) and anterior (costal) portions of the diaphragm.7 This coordination may be compromised in patients with chronic low back pain.

CONCLUSION

We found reduced diaphragm movement when isometric flexion against resistance of the up- per or lower extremities was applied. The combined, more cranial position in the anterior and middle portions of the diaphragm and, particularly, the steeper slope between the middle and crural por- tions of the diaphragm in patients with chronic low back pain may contribute to low back pain symptoms. However, given that the results are based on cross- sectional analysis, we cannot exclude the possibility of reverse causation. Still, the results support the theory that patients with low back pain complaints present with compromised diaphragm function, which may play an important role in pos- tural stability.

KEY POINTS

FINDINGS: We found reduced diaphragm movement in patients with chronic low back pain compared to healthy controls when isometric flexion against resis- tance of the upper or lower extremity was applied, mainly in the anterior

and middle portions. This pattern of diaphragmatic recruitment resulted in
a steeper angle in the middle-posterior part of the diaphragm and likely a great- er strain during activity on the ventral region of the spinal column. IMPLICATIONS: Abnormal postural activa- tion of the diaphragm during the pos- tural task of isometric resistance to the extremities may serve as 1 underlying mechanism of chronic low back pain. CAUTION: Only an isolated analysis of the diaphragm excursion was performed, due to the limited field of view. In ad- dition, the diaphragm excursion alone may not be sufficient to understand all mechanical actions of the rib cage and related musculature. We used a con- venience sample in which the patient and control groups differed in size and certain demographic characteristics. Because our study was cross-sectional in nature, we cannot exclude the possibil- ity that low back pain symptoms may be indicative of an initial pathogenic insult resulting in secondary quantitative as well as qualitative adaptive changes in diaphragmatic function.

Ukjent sin avatar

Inflammatory Cytokine Concentrations Are Acutely Increased by Hyperglycemia in Humans

Denne viser hvordan selv de uten diabetes får økt cytokinverdi (betennelse) i blodet i 1-2 timer etter blodsukkerstigning. I denne studien var det snakk om blodsukker over 15 mmol/L. De sier at blodsukker økninger påvirker cytokinnivået mer enn et stabilt høyt blodsukker.

http://circ.ahajournals.org/content/106/16/2067.full

Control Subjects:

Plasma IL-6 levels rose from a basal value of 2.0±0.7 pg/mL to a peak of 3.1±0.9 pg/mL at 1 hour (P<0.01) and returned to basal level at 3 hours (Figure 2).

Fasting plasma TNF-α levels were 3.3±1.2 pg/mL; they peaked at 1 hour (4.9±1.4 pg/mL, P<0.01), and returned to baseline at 3 hours.

Plasma IL-18 levels rose from a basal value of 116±28 pg/mL to a peak of 140±31 pg/mL at 2 hours (P<0.01) and returned to basal levels at 3 hours (110±26 pg/mL).

The novel findings of the present study were that (1) acute hyperglycemia in control and in IGT subjects induces an increase in plasma IL-6, TNF-α, and IL-18 concentrations; (2) the effect of sustained hyperglycemia is reproduced by transient oscillations in plasma glucose and is amplified by the IGT status; and (3) the antioxidant glutathione completely prevents the rise in plasma cytokines induced by hyperglycemia. These results indicate that hyperglycemic spikes affect cytokine concentrations more than continuous hyperglycemia, at least in the short term, and suggest that an oxidative mechanism mediates the effect of hyperglycemia.

Another finding of the present study was that glutathione, a powerful antioxidant, completely prevented cytokine increase induced by oscillatory hyperglycemia in healthy humans. Hyperglycemia-induced oxidative stress, 32 along with soluble advanced glycation end products and products of lipid peroxidation, possibly serves as a key activator of upstream kinases, leading to induction of inflammatory gene expression.33