Ukjent sin avatar

Tynnfibernevropati

Alt om small fiber neuropathy, tynnfibernevropati, på norsk. Nevner at det er en underdiagnostisert tilstand, og vanskelig å diagnostisere siden alle nevrologiske tester er normale. Nevner også medikamenter, men at disse heller ikke gir særlig god effekt. De skriver at man kan behandle den underliggende sykdommen, men vi kan vel forvente at de mener medikamentell behandling da også, uten noen forhold til ernæring, trening eller manuell behandling.

http://tidsskriftet.no/article/2961926/

På grunn av manglende kunnskap om tilstanden blant mange leger samt begrensede diagnostiske metoder, er denne typen nevropati sannsynligvis underdiagnostisert. Tynnfibernevropati kan ha mange årsaker, men symptomene er ofte relativt like.

Tynnfibernevropati gir en karakteristisk distribusjon av symptomer, spesielt smerte, og er assosiert med flere vanlige sykdomstilstander. Spesifikke tynnfibertester som hudbiopsi og termotest kan brukes for å stille diagnosen. Behandlingen er symptomatisk, men det er ofte vanskelig å oppnå fullstendig smertelindring.

Den kliniske nevrologiske undersøkelsen vil i liten grad kunne påvise tynnfibernevropati, men først og fremst bidra til å utelukke en mer generell polynevropati. Ofte er det nødvendig med supplerende undersøkelser for å stille endelig diagnose.

Tynnfibernevropati affiserer enten selektivt eller i overveiende grad de tynne nervefibrene, dvs. de umyeliniserte C-fibrene og de tynne, myeliniserte A-deltafibrene.

Tynnfiberskaden er størst hos de pasientene som også har en tykkfibernevropati (1). Forekomst av tynnfibernevropati er ikke kjent (2). Dette skyldes hovedsakelig at diagnosen baseres på metoder som er innført de senere årene og som fortsatt ikke er rutine. Men tynnfibernevropati forekommer ved mange forholdsvis vanlige tilstander.

Symptomene ved tynnfibernevropati gjenspeiler ikke årsaken til nevropatien, men hvilke fibre som er affisert. Den vanligste grunnen til at en pasient søker lege, er etter vår erfaring smerter distalt i ekstremitetene, slik det også ofte er gjengitt i den aktuelle litteraturen. Dette skyldes en affeksjon av de tynne afferente A-delta-fibrene og C-fibrene.

Efferente, tynne autonome sudomotoriske og/eller vasomotoriske fibre kan være skadet, og noen pasienter opplever da et endret svettemønster (som regel manglende svette) og/eller kalde ekstremiteter.

Det er viktig å presisere at en smertetilstand som omfatter hele kroppen som regel ikke vil være uttrykk for en perifer tynnfibernevropati.

Pasienter beskriver smerten ved tynnfibernevropati på mange ulike måter, slik det også er ved nevropatisk smerte generelt. Smerten kan være dyp og/eller overflatisk og ha mange kvaliteter; brennende, verkende, klemmende, skjærende, sviende, stikkende osv. Smerten kan være konstant eller intermitterende. Det mest typiske er at smerten forverres under, og spesielt etter, fysisk aktivitet, om kvelden når pasienten setter seg ned og om natten (2, 3). Pasienter med tynnfibernevropati kan i tillegg ha både spontan paroksysmal og provosert smerte (3). Den paroksysmale smerten innebærer støt- eller sjokkliknende smerte innenfor det smertefulle området, ofte med noe utstråling og med svært varierende frekvens. Den provoserte smerten er smerte utløst ved stimulering av det smertefulle området, som regel ved berøring, trykk, men av og til ved kulde og (noe sjeldnere) varmestimuli. Typisk vil mange pasienter beskrive smerter når de tar på seg sokker og sko, føle ubehag ved trykk fra dynen om natten og at det er smertefullt å gå barbeint. Provosert smerte kan inndeles i allodyni, dvs. smerte ved et normalt ikke-smertefullt stimulus og hyperalgesi, dvs. en unormal sterk smerte ved et normalt smertefullt stimulus (4).

Årsaken til at den nevnte smerten oppstår, er sannsynligvis ulike former for hypereksitabilitet i tynne umyeliniserte C-fibre. Det kan dreie seg om unormal spontan fyring eller doble og tredoble impulser (5). Mengden av spontan fyring synes å stå i forhold til intensiteten av den opplevde smerten (6). Fenomenene mekanisk allodyni og hyperalgesi skyldes i all hovedsak sentralnervøs sensitisering, altså endringer i det sentrale nervesystemet som inntreffer både i ryggmargen og høyere opp i sentralnervesystemet (7).

Tilstander som er assosiert med eller kan gi tynnfibernevropati

Metabolske

Diabetes mellitus type 1 og 2

Nedsatt glukosetoleranse (omdiskutert)

Hypotyreose

Hyperlipidemi

Leversvikt

Nyresvikt

Arvelige

Fabrys sykdom

Familiær amyloidose

Hereditær sensorisk og autonom nevropati

Toksiske

Alkoholmisbruk

B6-intoksikasjon

Cytostatika

Andre

Antifosfolipidsyndrom

Bindevevssykdommer

Cøliaki

Hemokromatose

Hiv

Kryoglobulinemi

Monoklonal gammopati

Paraneoplasi

Sarkoidose

Sjögrens syndrom

Den langt vanligste årsaken er antakelig diabetes mellitus (14). I flere studier har man også funnet at det er økt forekomst av forstadier til diabetes og nedsatt glukosetoleranse hos pasienter med tynnfibernevropati (15, 16) og pekt på at det er en mulig årsakssammenheng.

Det viktigste kriteriet for å mistenke tynnfibernevropati er manglende funn forenlig med generell tykkfibernevropati, dvs. at det er intakt sensibilitet for lett berøring, vibrasjon og leddsans, normal motorikk og normale reflekser. Pasientene vil ofte ha nærmest normal nevrologisk status, men kan ha nedsatt sensibilitet for stikk og temperatur, eventuelt også allodyni eller hyperalgesi, oftest i sokkeformet mønster. Allodyni undersøkes ved bruk av lett berøring med bomull eller en børste og hyperalgesi ved stikk med sikkerhetsnål eller liknende, for eksempel en spiss tannstikker.

Den viktigste delen av den kliniske undersøkelsen er anamneseopptaket, med spesielt fokus på eventuelle smerter, endret svettemønster og plager med kalde ekstremiteter.

Hudbiopsi. Hudbiopsi tas som en 3 mm eller 4 mm stansebiopsi i lokalanestesi, normalt fra nedre del av leggen

Termotest. Dette er en test av afferente temperaturmedierende A-delta-fibre og C-fibre. En termode festes på pasientens hud. Temperaturen i termoden kan være 10 – 50 °C. Pasienten signaliserer ved å trykke på en knapp når han eller hun kjenner den minste antydning til kulde (en test av A-delta-fibre), den minste antydning til varme (en test av C-fibre) og også ved terskel til kuldesmerte (en test av både A-delta-fibre og C-fibre) og varmesmerte (en test av C-fibre) (illustrasjon).

QSART (Quantitative sudomotor axon reflex test). Dette er en spesifikk og objektiv test av de efferente autonome sudomotorfibrene. Testen måler volum av svette på huden etter iontoforese av acetylkolin.

Andre tester på tynnfiberfunksjon. Det finnes en rekke andre tester på tynnfibre. Noen undersøker primært efferente fibre ved aksonreflekstest og svettetester. Det finnes også mer sofistikerte hudbiopsimetoder som kan avdekke tidlige forandringer i tynnfibre.

Hvis man kjenner årsaken til pasientens tynnfibernevropati, kan det i noen tilfeller være mulig å redusere symptomene ved behandling eller forebygging av grunnlidelsen. Foruten en alvorlig autonom nevropati som kan kreve overvåking og behandling i en intensivenhet, vil ofte smerte være det enkeltsymptomet som gjør at en pasient oppsøker lege.

Førstehåndspreparater ved behandling av smertefull tynnfibernevropati er trisykliske antidepressiver (amitriptylin, nortriptylin), serotonin-noradrenalinreopptakshemmere (duloksetin) eller anitiepileptika (gabapentin eller pregabalin) (34, 35). Antidepressiver og antiepileptika brukes alene eller i kombinasjon, og ved manglende eller partiell effekt kan det være aktuelt å prøve ut depotopioider til noen pasienter som tilleggsmedikasjon eller som monoterapi (28, 35).

Tynnfibernevropati forekommer ved mange vanlige lidelser, men det er grunn til å anta at det er en underdiagnostisert tilstand. Ved klinisk mistanke og normale funn ved EMG/nevrografi bør pasienten henvises til spesifikke tynnfibertester.

Ukjent sin avatar

Cramps and small-fiber neuropathy.

Om at kramper kan ha grunnlag i small fiber neuropathy. Nevropatien øker betennelsesutskillelsen fra nervecellene som dermed øker muskelsammentreningssignalene.

http://www.ncbi.nlm.nih.gov/m/pubmed/23813593/

Introduction: Muscle cramps are a common complaint and are thought to arise from spontaneous discharges of the motor nerve terminal.

Conclusions: Our data show that 60% of patients with muscle cramps who lack neuropathic complaints have SFN, as documented by decreased IENFD. Cramps may originate as local mediators of inflammation released by damaged small nerve that excite intramuscular nerves.

Ukjent sin avatar

Epidermal nerve fiber length density estimation using global spatial sampling in healthy subjects and neuropathy patients.

Om hvordan small fiber neuropathy (prikking, stikking, brenning, nummenhet, osv) kommer av redusert antall c-fibere i huden, og dermed ferre signaler opp til hjernen. Kan hjernen reagerer på lavt antall c-fibere med å sende smerte ut?

http://www.ncbi.nlm.nih.gov/m/pubmed/23399897

Assessment of intraepidermal nerve fiber density (IENFD) has become a useful tool for the investigation of patients with suspected small-fiber neuropathy (SFN).

Mean IENFD in SFN patients was 2.22 ± 1.63 mm versus 7.51 ± 2.17 mm in controls; mean length density was 112 ± 82.6 mm in SFN patients versus 565 ± 240 mm in controls (p < 0.001 for both).

There were significant differences in axonal swelling ratios between healthy subjects and patients, that is, per IENFD and per nerve fiber length

Ukjent sin avatar

Stretching before sleep reduces the frequency and severity of nocturnal leg cramps in older adults: a randomised trial.

Om at enkel stretching før leggetid gjør at nattlige kramper blir markant mindre.

http://www.ncbi.nlm.nih.gov/m/pubmed/22341378/
Hele studien her: http://ajp.physiotherapy.asn.au/AJP/vol_58/1/Hallegraeff.pdf

t six weeks, the frequency of nocturnal leg cramps decreased significantly more in the experimental group, mean difference 1.2 cramps per night (95% CI 0.6 to 1.8). The severity of the nocturnal leg cramps had also decreased significantly more in the experimental group than in the control group, mean difference 1.3 cm (95% CI 0.9 to 1.7) on the 10-cm visual analogue scale.

CONCLUSION: Nightly stretching before going to sleep reduces the frequency and severity of nocturnal leg cramps in older adults.

http://origin-ars.els-cdn.com/content/image/1-s2.0-S1836955312700681-gr1.jpg

What is already known on this topic: Nocturnal leg cramps are common among the elderly, causing pain and sleep disturbance. The medications used to prevent nocturnal leg cramps have variable efficacy and may have substantial side effects.
What this study adds: Nightly stretching of the calves and hamstrings reduces the frequency of nocturnal leg cramps in older adults. Nightly stretching also lessens the pain associated with any cramps that continue to occur.

The cause of nocturnal leg cramps is unknown. However, several possible causes and precipitating factors have been hypothesised. Abnormal excitability of motor nerves, perhaps due to electrolyte imbalance, may be a contributing mechanism (Monderer et al 2010). Diuretics, steroids, morphine, and lithium are also reported to cause nocturnal cramps, as can repetitive movements during sport (Butler et al 2002, Kanaan and Sawaya 2001, Monderer et al 2010). Conversely, physical inactivity has been proposed as a cause, with inadequate stretching leading to reduced muscle and tendon length (Monderer et al 2010, Sontag and Wanner 1988).

Quinine and hydroquinine are moderately effective in reducing the frequency and severity of nocturnal leg cramps (El-Tawil et al 2010, van Kan et al 2000), perhaps by decreasing the excitability of the motor end plate and thereby increasing the refractory period of a muscle (Vetrugno et al 2007). However, quinine can have important side effects, especially for women, such as: thrombocytopenia, hepatitis, high blood pressure, tinnitus, severe skin rash, and haemolytic uremic syndrome (Aronson 2006, Inan-Arslan et al 2006).

Although other medications have been used to treat nocturnal leg cramps such as magnesium, Vitamin B Complex Forte, calcium, and vitamin E, none of these appears to be effective (Anonymous 2007, Daniell 1979).

Moreover, stretching techniques can foster a resilient attitude toward recovery in patients with nocturnal leg cramps by promoting a ‘bounce back and move on’ behavioural strategy (Norris et al 2008), because they give patients a strategy to seek immediate relief.

Each stretch was performed a total of three times, with 10 seconds of relaxation between each stretch. Stretching of both legs was done within three minutes.

Our results showed that six weeks of nightly stretching of the calf and hamstring muscles significantly reduced the frequency and severity of nocturnal leg cramps in older people. The best estimate of the average effect of stretching on the frequency of cramps was a reduction of about one cramp per night.

The stretches reduced the severity of the pain that occurred with the nocturnal leg cramps by 1.3 cm on a 10-cm visual analogue scale.

Ukjent sin avatar

The effect of glucose concentration on peripheral nerve and its response to anoxia.

Denne nevner at både for høyt og for lavt blodsukker er sakdelig for nervesystemet. Hele studien er ikke publisert enda, men når den kommer blir det interessant å se hvor høyt blodsukkeret er før det begynner å påvirke nervesystemet. Den nevner at alt mellom 2,8 – 5,6 nmol/L er ok.

http://www.ncbi.nlm.nih.gov/pubmed/23733393

The effects of glucose on the nerve action potential (NAP) were investigated for concentrations between 0 mmol/l and 55.5 mmol/l in an in vitro system using rat sciatic nerve.

Results: Hypoglycemia produces immediate reductions in NAP amplitude and velocity, while hyperglycemia has the opposite effect in the short term.

Over a 12-hour experiment, the amplitude of the NAP remained stable for glucose concentrations in the range 2.8-5.6 mmol/l, but when the glucose concentration was <2.8 mmol/l or >27.8 mmol/l, the amplitude of the NAP declined.

This study confirms the importance of glucose concentration for nerve function especially during anoxia.

Ukjent sin avatar

Immediate effects of region-specific and non-region-specific spinal manipulative therapy in patients with chronic low back pain: a randomized controlled trial.

Om hvordan en detaljert klinisk undersøkelse egentlig er unødvendig…

http://www.ncbi.nlm.nih.gov/m/pubmed/23431209

BACKGROUND: Manual therapists typically advocate the need for a detailed clinical examination to decide which vertebral level should be manipulated in patients with low back pain. However, it is unclear whether spinal manipulation needs to be specific to a vertebral level.

Both groups improved in terms of immediate decrease of pain intensity; however, no between-group differences were observed.

CONCLUSION: The immediate changes in pain intensity and pressure pain threshold after a single high-velocity manipulation do not differ by region-specific versus non-region-specific manipulation techniques in patients with chronic low back pain.

Ukjent sin avatar

Spinal manipulative therapy for low back pain.

Om hvordan forskjellige behandlingsformer egentlig ikke har så mye forskjellige resultater på smerter…

http://www.ncbi.nlm.nih.gov/m/pubmed/14973958/

Spinal manipulative therapy had no statistically or clinically significant advantage over general practitioner care, analgesics, physical therapy, exercises, or back school. Results for patients with chronic low-back pain were similar.

Radiation of pain, study quality, profession of manipulator, and use of manipulation alone or in combination with other therapies did not affect these results.

Ukjent sin avatar

Nociceptors: the sensors of the pain pathway

Alt om nociceptorer og smerte. Nevner at nedstigende signaler i ryggmargen sender signaler ut i perferien hvor nervetråden utløser betennelser og dermed gir smerte i huden.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964977/

Since enhanced excitability of primary sensory neurons in inflammatory and pathologic pain states is a major contributor to the perception of pain, specific pharmacological agents that specifically dampen aberrant activity are desirable in the design of pain therapeutics.

Anatomy of nociceptors.

(A) Somatosensory neurons are located in peripheral ganglia (trigeminal and dorsal root ganglia) located alongside the spinal column and medulla. Afferent neurons project centrally to the brainstem (Vc) and dorsal horn of the spinal cord and peripherally to the skin and other organs. Vc, trigeminal brainstem sensory subnucleus caudalis. (B) Most nociceptors are unmyelinated with small diameter axons (C-fibers, red). Their peripheral afferent innervates the skin (dermis and/or epidermis) and central process projects to superficial laminae I and II of the dorsal horn. (C) A-fiber nociceptors are myelinated and usually have conduction velocities in the Aδ range (red). A-fiber nociceptors project to superficial laminae I and V.

Pain, as a submodality of somatic sensation, has been defined as a “complex constellation of unpleasant sensory, emotional and cognitive experiences provoked by real or perceived tissue damage and manifested by certain autonomic, psychological, and behavioral reactions” (1).

Normally, nociception (see Glossary, Sidebar 1) and the perception of pain are evoked only at pressures and temperatures extreme enough to potentially injure tissues and by toxic molecules and inflammatory mediators.

Pain is described as having different qualities and temporal features depending on the modality and locality of the stimulus, respectively: first pain is described as lancinating, stabbing, or pricking; second pain is more pervasive and includes burning, throbbing, cramping, and aching and recruits sustained affective components with descriptors such as “sickening” (3).

As opposed to the relatively more objective nature of other senses, pain is highly individual and subjective (4, 5) and the translation of nociception into pain perception can be curtailed by stress or exacerbated by anticipation (6).

Adequate stimuli include temperature extremes (> ~40°C–45°C or < ~15°C), intense pressure, and chemicals signaling potential or actual tissue damage. Nociceptors are generally electrically silent (12) and transmit all-or-none action potentials only when stimulated.

However, nociceptor activity does not per se lead to the perception of pain. The latter requires peripheral information to reach higher centers and normally depends on the frequency of action potentials in primary afferents, temporal summation of pre- and postsynaptic signals, and central influences (7).

Most nociceptors have small diameter unmyelinated axons (C-fibers) (12) bundled in fascicles surrounded by Schwann cells and support conduction velocities of 0.4–1.4 m/s (22) (Figure ​(Figure1).1). Initial fast-onset pain is mediated by A-fiber nociceptors whose axons are myelinated and support conduction velocities of approximately 5–30 m/s (most in the slower Aδ range) (22).

Noxious stimuli are transduced into electrical signals in free “unencapsulated” nerve endings that have branched from the main axon and terminate in the wall of arterioles and surrounding connective tissue, and may innervate distinct regions in the dermis and epidermis (17, 30). The endings are ensheathed by Schwann cells except at the end bulb and at mitochondria- and vesicle-rich varicosities (17). A–fibers lose their myelin sheath and the unmyelinated A-fiber branches cluster in separated small spots within a small area, the anatomical substrate for their receptive field (17). C-fiber branches are generally more broadly distributed, precluding precise localization of the stimulus (17).

In contrast, specialized nonneuronal structures conferring high sensitivity to light touch, stretch, vibration, and hair movement are innervated by low threshold A-fibers (11).

They terminate predominantly in laminae I, II, and V of the dorsal horn on relay neurons and local interneurons important for signal modification (13, 37, 38) (Figure ​(Figure1,1, B and C). The relay neurons project to the medulla, mesencephalon, and thalamus, which in turn project to somatosensory and anterior cingulate cortices to drive sensory-discriminative and affective-cognitive aspects of pain, respectively (38). Local inhibitory and excitatory interneurons in the dorsal horn as well as descending inhibitory and facilitatory pathways originating in the brain modulate the transmission of nociceptive signals, thus contributing to the prioritization of pain perception relative to other competing behavioral needs and homeostatic demands (39).

Whereas heat- and chemical-induced nociceptor responses correlate with pain perception in humans (9,24), mechanical stimulation of C-MH (24) and rapidly adapting A-HTM (18) fibers may not (24) (Tables​(Tables11 and ​and2).2).

To this end, an understanding of species-specific differences is critical, as exemplified by the dramatically different phenotypes in mice and humans lacking Nav1.7: although mice lacking Nav1.7 show a mechanosensory (pinch) and formalin-induced (5%) pain phenotype (103), humans lacking Nav1.7 are insensitive to pain altogether (104).

Anterograde transmission of action potentials from the spinal cord to the periphery results in release of peptides and other inflammatory mediators in the skin and exacerbates nociceptor excitability and pain (see below). It is at the spinal level that nonnociceptive neurons are recruited by strong nociceptor activation through functional modulation of local circuits (105).

Injury to the skin induces protective physiological responses aimed at decreasing the likelihood of exacerbating the injury. After an injury induced by pungent chemicals (e.g., capsaicin, mustard oil) and burn, stimulation of the injured area produces enhanced pain to noxious stimuli (primary mechanical and thermal hyperalgesia) dependent on C-fiber activity that manifests as a decrease in threshold to activate C-MH fibers and to perceive pain (9, 19, 106). Immediately surrounding the injured area, a zone of flare (reddening) develops and stimulation of even a larger secondary zone produces pain in response to normally innocuous stimuli (e.g., brush stroke) (secondary mechanical allodynia) as well as enhanced responsiveness to noxious mechanical (secondary mechanical hyperalgesia) and thermal (heat) hyperalgesia if spatial summation is invoked (secondary thermal hyperalgesia) (21, 105, 107). Here, noxious punctate stimulation of C-nociceptors induces secondary mechanical hyperalgesia mediated by A-nociceptors (7) and innocuous dynamic mechanical stimuli (gentle stroking) provokes nonnociceptor A-fiber–mediated pain (108). Cellular mechanisms underlying this complicated response involve both peripheral and central processes (14, 38, 105, 107) and require nociceptor input, particularly A-MH and C-MH fibers (19, 91, 105). After a burn, A-MH fibers (most likely type I) mediate primary heat hyperalgesia in glabrous skin (9).

Centrally propagating impulses can antidromically invade peripheral arborizations innervating other areas in the afferent’s receptive field (axon reflex), causing the release of peptides (e.g., substance P, CGRP, somatostatin) and/or other bioactive substances from the terminal (e.g., cytokines) into the interstitial tissue (17). The released substances produce a myriad of autocrine or paracrine effects on endothelial, epithelial, and resident immune cells (Langerhans), which lead to arteriolar vasodilatation (“flare,” via CGRP) and/or increased vascular permeability and plasma extravasation from venules (edema, via substance P). Liberated enzymes (e.g., kallikreins) and blood cells (e.g., platelets, mast cells) further contribute to the accumulation of inflammatory mediators and neurogenic inflammation (110, 111).

A recently described phenomenon (“hyperalgesic priming”) evoked by cytokine- and neurotrophin-induced recruitment of Gi/o-PKCε signaling in nociceptors can produce prolonged sensitization and mechanical hyperalgesia and may contribute to chronic pain (114).

Significant crosstalk between these pathways exists at multiple levels including stimulus transduction (118), peripheral terminals during neurogenic inflammation, and central connections during central sensitization and may underlie paradoxical temperature sensation.

Ukjent sin avatar

Can pain change our brain maps?

Om at området med smerte får en mindre størrelse i Primary Sensory Cortex (S1) i hjernen.

http://www.bodyinmind.org/crpscan-pain-change-our-brain-maps/

That S1 reorganises with pain, and the S1 representation of the CRPS-affected hand is smaller, is widely assumed and accepted.

We found consistent evidence that the representation of the CRPS-affected hand in S1 is smaller than that of the unaffected hand, and that of healthy pain-free controls.