Ukjent sin avatar

Skin Biopsy as a Diagnostic Tool in Peripheral Neuropathy: Correlates of Intraepidermal Nerve Fiber Density

Denne nevner mye om nevropati og sammenhengen mellom small fiber density og smerte, pluss at den nevner hvordan trening og steroidbehandling øker tettheten igjen. Viktigst prinsipp å hente fra denne artikkelen er at c-fiber tettheten sier noe om intensiteten på smerten, men ikke noe om smertetilstanden. Man kan ha lav tetthet og lite smerte, men om man får smerte er intensiteten desto høyere. Man må desverre logge inn for å få opp linkene.

http://www.medscape.org/viewarticle/563262_6

In diabetic neuropathy, patients with pain had lower IENF densities than did asymptomatic patients, but IENF density did not correlate with pain intensity within the group of symptomatic patients.[82]

In patients with impaired glucose tolerance, diet and exercise induced a slight recovery of IENF density that was associated with a reduction in pain symptoms.[83] Similarly, epidermal reinnervation coincided with pain reduction after steroid treatment.[71]

CORRELATES OF INTRAEPIDERMAL NERVE FIBER DENSITY

Clinical Picture, Etiology and Neuropathic Pain

The clinical picture of small-fiber neuropathy is dominated by spontaneous and stimulus-evoked positive sensory symptoms—namely thermal and pinprick hypoesthesia—that can mask the signs of small-fiber loss. Only a few studies have attempted to correlate IENF density with validated clinical scales. In patients with diabetic neuropathy, a negative correlation between IENF density and neuropathy symptom score was reported.[53,56]These studies also showed that the extent of epidermal denervation correlated with the duration of diabetes but not with hemoglobin A1C levels, suggesting that IENF density might be useful as a marker of neuropathy progression. A recent study found a high concordance between reduced IENF density and loss of pinprick sensation in the foot.[61]

Skin biopsy has allowed small-fiber neuropathy to be demonstrated in restless legs syndrome[75] and erythromelalgia.[76] In systemic diseases, such as systemic lupus erythematosus, sarcoidosis, Sjögren’s syndrome, celiac disease and hypothyroidism, skin biopsy has enabled correlations to be found between neuropathic symptoms and small-fiber degeneration.[52,65,77–79]Although IENF density is a general marker of axonal integrity in peripheral neuropathies, it cannot be used to directly address the question of etiology. Skin biopsy findings can, however, indirectly contribute to the assessment of etiology. For example, in 40% of patients with small-fiber neuropathy diagnosed only after skin biopsy, oral glucose tolerance testing revealed a previously undetected impaired glucose tolerance.[49] Similarly, the distribution of IENF loss can help to differentiate between a non-length-dependent sensory neuronopathy and a length-dependent axonal neuropathy,[78,80] thereby leading to focused screening for associated diseases.

The relationship between IENF density and neuropathic pain remains uncertain. In HIV neuropathy, IENF density correlated inversely with pain severity when assessed by the patient, but not when the Gracely Pain Scale was used.[66] Another study found only a trend towards an inverse correlation between IENF density and pain intensity in this setting.[81] In diabetic neuropathy, patients with pain had lower IENF densities than did asymptomatic patients, but IENF density did not correlate with pain intensity within the group of symptomatic patients.[82] In patients with impaired glucose tolerance, diet and exercise induced a slight recovery of IENF density that was associated with a reduction in pain symptoms.[83] Similarly, epidermal reinnervation coincided with pain reduction after steroid treatment.[71]In length-dependent neuropathies, therefore, more-severe IENF loss seems to increase the risk of developing pain, the intensity of which might decrease in parallel with recovery of IENF density.

In postherpetic neuralgia, on the basis of evidence of relatively preserved skin innervation in the area of severe allodynia, normal thermal sensory function, pain relief in response to topical lidocaine, and worsening of pain with application of capsaicin, surgical removal of painful skin has been attempted.[84] After initial relief, pain increased, became intractable, and spread to previously unaffected dermatomes, suggesting the involvement of central mechanisms in the pathogenesis of neuropathic pain.

Sensory Nerve Conduction Studies

Sural sensory nerve action potential (SNAP) amplitude, which reflects the integrity of largediameter fibers, showed concordance with IENF density in the distal part of the leg in patients with large-fiber or mixed small-fiber and largefiber neuropathy. Not surprisingly, skin biopsy analysis seemed to be more sensitive than sural nerve conduction studies for diagnosing smallfiber neuropathy.[62] One study,[85] however, showed that in patients with symptoms of small-fiber neuropathy and normal sural nerve conduction, reduced IENF density correlated with a decrease in SNAP amplitude in the medial plantar nerve. This finding suggests subclinical involvement of the most-distal large fibers in small-fiber neuropathy.

Psychophysical Tests

The detection of thermal and pain thresholds using quantitative sensory testing has been widely used to assess the function of small nerve fibers. Although this approach is useful in population studies, it is an unreliable tool for diagnosing small-fiber neuropathy in clinical practice.[86] Moreover, the size of the probe used for the test can affect the results.[87]

In view of the fact that unmyelinated fibers and thinly myelinated fibers convey warm and cold sensation, respectively, thermal thresholds would be expected to correlate with IENF density. In diabetic neuropathy, IENF density was found to be inversely correlated with thermal and pain thresholds, showing the highest correlation with warm threshold.[53,56,82]Similarly, in Guillain–Barré syndrome lower IENF density was associated with increased warm threshold.[67]One study reported a significant correlation between cold pain threshold and signs of large-fiber impairment.[59]By contrast, others studies did not find any correlation between quantitative sensory testing results and IENF density.[45,51,88]

Autonomic Tests

As IENFs are somatic unmyelinated fibers, their density would not be expected to correlate with autonomic fiber function. Intriguingly, however, in patients with Guillain–Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, lower IENF density was associated with a higher risk of developing dysautonomia.[64,67]These findings suggest that the integrity of IENFs might reflect the integrity of the whole class of small nerve fibers, including autonomic fibers. A few studies have investigated the correlation between IENF density and the results of a quantitative sudomotor axonal reflex test in patients with painful neuropathy and autonomic symptoms in order to test the hypothesis that IENF density and sweat output might decrease concomitantly. IENF density correlated with test results in one study,[63] but not in another.[51] In leprosy neuropathy, reduced nicotine-induced axon-reflex sweating correlated with decreased innervation of sweat glands.[88]

Nonconventional Neurophysiological Tests

Laser-evoked potentials (LEPs) have been used to investigate peripheral and central nociceptive pathways in trigeminal neuralgia and peripheral neuropathies. Late LEPs, reflecting Aδ-fiber activation, are delayed in patients with neuropathic pain, but can be enhanced when the pain has a psychogenic origin.[89] Recording of ultralate LEPs, reflecting activation of unmyelinated C-fibers, is less reliable than recording of late LEPs, thereby limiting the overall usefulness of LEPs in clinical practice. LEPs and skin biopsy findings have been examined in single case reports.[90]In two patients with Ross syndrome, abnormal LEPs correlated with decreased IENF density and increased thermal thresholds.[91] No study has yet looked for a correlation between results of skin biopsy analysis and recording of contact heat-evoked potentials, a technique that was recently proposed for investigating smallfiber function, but which cannot be used to assess C-fiber-related responses.[92]

Microneurography allows single-fiber recordings from nerves in awake patients. This technique demonstrated loss of nociceptive and skin sympathetic C-fiber activity that correlated with IENF and sweat gland denervation in a patient with hereditary sensory and autonomic neuropathy type IV.[20]In two patients with generalized anhidrosis, C-fiber recording and sweat gland innervation analysis distinguished postganglionic autonomic nerve fiber impairment from eccrine gland dysfunction.[34]

Sural Nerve Biopsy

The diagnosis of small-fiber neuropathy is better assessed by skin biopsy than by sural nerve biopsy.[57]IENF density can be reduced despite normal morphometry of unmyelinated and thinly myelinated fibers in sural nerve biopsy.[58] In a large comparative study,[62] skin and sural nerve biopsy findings were concordant in 73% of patients, but in 23% of patients IENF density was the only indicator of small-fiber neuropathy. Skin biopsy offers the opportunity to differentiate small nerve fibers with somatic function from those with autonomic function, thereby giving it a further advantage over nerve biopsy. In Charcot–Marie–Tooth disease and related hereditary neuropathies, a biopsy sample of the glabrous skin demonstrated the typical neuropathological abnormalities known from sural nerve studies.[5,6]

Immunohistochemical studies demonstrated IgM deposited specifically in the myelinated fibers of hairy and glabrous skin in patients with anti-myelin-associated-glycoprotein neuropathy.[93] Although skin biopsy can be contemplated in genetic and immune-mediated neuropathies, sural nerve biopsy should always be considered to confirm the diagnosis in inflammatory polyradiculoneuropathy with atypical presentation, or when vasculitic or amyloid neuropathy is suspected.

Ukjent sin avatar

High spontaneous activity of C-nociceptors in painful polyneuropathy.

Viser hvordan c-fibre fyrer av i både smertefull og ikke-smertefull nevropati. Jo mer spontan aktivitet c-fibrene har, jo mer smerte oppleves.

http://www.ncbi.nlm.nih.gov/pubmed/22986070?dopt=Abstract

Polyneuropathy can be linked to chronic pain but also to reduced pain sensitivity. We investigated peripheral C-nociceptors in painful and painless polyneuropathy patients to identify pain-specific changes. Eleven polyneuropathy patients with persistent spontaneous pain and 8 polyneuropathy patients without spontaneous pain were investigated by routine clinical methods

The mean percentage of C-nociceptors being spontaneously active or mechanically sensitized was significantly higher in patients with pain (mean 40.5% and 14.6%, respectively, P=.02). The difference was mainly due to more spontaneously active mechanoinsensitive C-nociceptors (operationally defined by their mechanical insensitivity and their axonal characteristics) in the pain patients (19 of 56 vs 6 of 43; P=.02).

Hyperexcitability in mechanoinsensitive C-nociceptors was significantly higher in patients with polyneuropathy and pain compared to patients with polyneuropathy without pain, while the difference was much less prominent in mechanosensitive (polymodal) C-nociceptors. This hyperexcitability may be a major underlying mechanism for the pain experienced by patients with painful peripheral neuropathy.

Ukjent sin avatar

Double spikes to single electrical stimulation correlates to spontaneous activity of nociceptors in painful neuropathy patients.

Viser hvor stor andel av c-fibrene som har spontan aktivitet ved nevropati, og hvor stor andel av de igjen som har dobbelt eller trippelt avfyring. Nevner at spontane avfyringer skjer i en viss andel av de uten multippel avfyring også. Og at selv uten smerte er det en liten andel av fibrene som fyrer av dobbelt. De konkluderer med at det er usikkert hvordan slik spontan aktivitetet egentlig er relatert til kliniske smertenivåer.

http://www.ncbi.nlm.nih.gov/pubmed/22154219

Multiple firing of C nociceptors upon a single electrical stimulus has been suggested to be a possible mechanism contributing to neuropathic pain. Because this phenomenon maybe based on a unidirectional conduction block, it might also be related to neuropathic changes without a direct link to pain.

In 11 of 105 nociceptors, double spiking was found, with 1 fibre even showing triple spikes on electrical stimulation.

There was a significant association between spontaneous activity and multiple spiking in C nociceptors, with spontaneous activity being present in 9 of 11 fibres with multiple spiking, but only in 21 of 94 nociceptors without multiple spiking (P<.005, Fisher exact test).

Among the 75 C nociceptors without spontaneous activity, only 2 nociceptors showed multiple spiking.

In 8 neuropathy patients without pain, double spiking was found only in 4 of 90 nociceptors

Multiple spiking of nociceptors coincides with spontaneous activity in nociceptors of painful neuropathy patients. We therefore conclude that rather than being a generic sign of neuropathy, multiple spiking is linked to axonal hyperexcitability and spontaneous activity of nociceptors. It is still unclear whether it also is mechanistically related to the clinical pain level.

Ukjent sin avatar

Double and triple spikes in C-nociceptors in neuropathic pain states: an additional peripheral mechanism of hyperalgesia.

Om at nociceptive c-fibre i en nevropatisk tilstand kan fyre av dobbelt og trippelt ved en enkel stimulering. De forsterker signalene og bidrar til hyperalgesi (økt smerteopplevelse av en vanligvis normal smerteaktivering).

http://www.ncbi.nlm.nih.gov/pubmed/21130572

It was previously reported that in 5 patients with small-fiber neuropathy, neuropathic pain, and hyperalgesia, application of a single, brief electrical stimulus to the skin could give rise to 2 afferent impulses in a C-nociceptor fiber. These double spikes, which are attributed to unidirectional conduction failure at branch points in the terminal arborisation, provide a possible mechanism for hyperalgesia.

We here report that similar multiple spikes are regularly observed in 3 rat models of neuropathic pain: nerve crush, nerve suture, and chronic constriction injury. The proportion of nociceptor fibers exhibiting multiple spikes was similar (10.1-18.5%) in the 3 models, and significantly greater than the proportion in control (unoperated) animals (1.2%).

Whereas only double spikes had previously been described in patients, in these more extensive recordings from rats we found that triple spikes could also be observed after a single electrical stimulus. The results strengthen the suggestion that multiple spiking, because of impaired conduction in the terminal branches of nociceptors, may contribute to hyperalgesia in patients with neuropathic pain. Double and triple spikes in c-nociceptors, caused by impaired conduction in terminal branches, may be an important cause of hyperalgesia in patients with neuropathic pain.

Ukjent sin avatar

Objective evidence that small-fiber polyneuropathy underlies some illnesses currently labeled as fibromyalgia

Om fibromyalgi og at 41% av pasientene har tynnfibernevropati. 3% av kontrollgruppen har det. Tynnfibernevropati-type smerter er en del av mange sykdommer og flere studier viser at det er underdiagnostisert.

http://www.painjournalonline.com/article/S0304-3959(13)00294-7/abstract

No specific objective abnormalities have been identified, which precludes definitive testing, disease-modifying treatments, and identification of causes.

We found that 41% of skin biopsies from subjects with fibromyalgia vs 3% of biopsies from control subjects were diagnostic for SFPN, and MNSI and UENS scores were higher in patients with fibromyalgia than in control subjects (all P0.001).

Abnormal AFTs (autonomic function test) were equally prevalent, suggesting that fibromyalgia-associated SFPN is primarily somatic.

These findings suggest that some patients with chronic pain labeled as fibromyalgia have unrecognized SFPN, a distinct disease that can be tested for objectively and sometimes treated definitively.

Ukjent sin avatar

Neural tissue management provides immediate clinically relevant benefits without harmful effects for patients with nerve-related neck and arm pain: a randomised trial

Om hvordan manipulering av vevet rundt nerver gir en umiddelbar bedring av nakkesmerter med utstårling ut armen.

http://ajp.physiotherapy.asn.au/AJP/vol_58/1/Nee.pdf

These results enable physiotherapists to inform patients that neural tissue management provides immediate clinically relevant benefits beyond advice to remain active with no evidence of harmful effects.

One month prevalence rates for activity-limiting neck pain range from 7.5% to 14.5% in the general population (Hogg-Johnson et al 2008, Webb et al 2003). Neck pain spreading down the arm is more common than neck pain alone and is associated with higher levels of self-reported disability (Daffner et al 2003). One mechanism for neck pain spreading down the arm is the sensitisation of neural tissues (Bogduk 2009).

Neural tissue management was based on principles proposed by Elvey (1986) and Butler (2000). Along with advice to continue their usual activities, participants assigned to the experimental group received an educational component, manual therapy techniques, and a home program of nerve gliding exercises. The educational component attempted to reduce unnecessary apprehension participants may have had about neural tissue management (Butler 2000). The manual therapy techniques and nerve gliding exercises have been advocated for reducing nerve mechanosensitivity (Butler 2000, Coppieters and Butler 2008, Elvey 1986).

The educational component emphasised two points. First, examination findings suggested that participants’ symptoms were at least partly related to nerves in the neck and arm that had become overly sensitive to movement. Second, neural tissue management techniques would move the nerves in a gentle and pain-free manner, aiming to reduce this sensitivity. The manual therapy techniques included a contralateral cervical lateral glide and a shoulder girdle oscillation combined with active craniocervical flexion to elongate the posterior cervical spine (Elvey 1986). The home program of nerve gliding exercises involved a ‘sliding’ and a ‘tensioning’ technique for the median nerve and cervical nerve roots (Coppieters and Butler 2008).

There was no evidence to suggest that neural tissue management was harmful. ‘Worst case’ intention-to- treat and ‘complete case’ analyses showed no difference in the prevalence of worsening between groups (Table 2).

Ukjent sin avatar

A novel protocol to develop a prediction model that identifies patients with nerve-related neck and arm pain who benefit from the early introduction of neural tissue management

Om hvordan mobilisering av vevet rundt nervetrådene gir solid bedring på nakkesmerter med utstrålinger ut i armen. Studien har detaljert beskrivelse av teknikkene. Kan det være at den fikk så stor bedring ved at kriteriene ble satt på subjektiv opplevelse av «moderat bedring» av klientene?

http://www.sciencedirect.com/science/article/pii/S1551714411001455

We describe a novel protocol to develop a prediction model that identifies patients with nerve-related neck and arm pain who are likely to benefit from the early introduction of neural tissue management (NTM).

Patients rating themselves at least ‘moderately better’ on a Global Rating of Change scale will be considered ‘improved’.

Ukjent sin avatar

Tynnfibernevropati

Alt om small fiber neuropathy, tynnfibernevropati, på norsk. Nevner at det er en underdiagnostisert tilstand, og vanskelig å diagnostisere siden alle nevrologiske tester er normale. Nevner også medikamenter, men at disse heller ikke gir særlig god effekt. De skriver at man kan behandle den underliggende sykdommen, men vi kan vel forvente at de mener medikamentell behandling da også, uten noen forhold til ernæring, trening eller manuell behandling.

http://tidsskriftet.no/article/2961926/

På grunn av manglende kunnskap om tilstanden blant mange leger samt begrensede diagnostiske metoder, er denne typen nevropati sannsynligvis underdiagnostisert. Tynnfibernevropati kan ha mange årsaker, men symptomene er ofte relativt like.

Tynnfibernevropati gir en karakteristisk distribusjon av symptomer, spesielt smerte, og er assosiert med flere vanlige sykdomstilstander. Spesifikke tynnfibertester som hudbiopsi og termotest kan brukes for å stille diagnosen. Behandlingen er symptomatisk, men det er ofte vanskelig å oppnå fullstendig smertelindring.

Den kliniske nevrologiske undersøkelsen vil i liten grad kunne påvise tynnfibernevropati, men først og fremst bidra til å utelukke en mer generell polynevropati. Ofte er det nødvendig med supplerende undersøkelser for å stille endelig diagnose.

Tynnfibernevropati affiserer enten selektivt eller i overveiende grad de tynne nervefibrene, dvs. de umyeliniserte C-fibrene og de tynne, myeliniserte A-deltafibrene.

Tynnfiberskaden er størst hos de pasientene som også har en tykkfibernevropati (1). Forekomst av tynnfibernevropati er ikke kjent (2). Dette skyldes hovedsakelig at diagnosen baseres på metoder som er innført de senere årene og som fortsatt ikke er rutine. Men tynnfibernevropati forekommer ved mange forholdsvis vanlige tilstander.

Symptomene ved tynnfibernevropati gjenspeiler ikke årsaken til nevropatien, men hvilke fibre som er affisert. Den vanligste grunnen til at en pasient søker lege, er etter vår erfaring smerter distalt i ekstremitetene, slik det også ofte er gjengitt i den aktuelle litteraturen. Dette skyldes en affeksjon av de tynne afferente A-delta-fibrene og C-fibrene.

Efferente, tynne autonome sudomotoriske og/eller vasomotoriske fibre kan være skadet, og noen pasienter opplever da et endret svettemønster (som regel manglende svette) og/eller kalde ekstremiteter.

Det er viktig å presisere at en smertetilstand som omfatter hele kroppen som regel ikke vil være uttrykk for en perifer tynnfibernevropati.

Pasienter beskriver smerten ved tynnfibernevropati på mange ulike måter, slik det også er ved nevropatisk smerte generelt. Smerten kan være dyp og/eller overflatisk og ha mange kvaliteter; brennende, verkende, klemmende, skjærende, sviende, stikkende osv. Smerten kan være konstant eller intermitterende. Det mest typiske er at smerten forverres under, og spesielt etter, fysisk aktivitet, om kvelden når pasienten setter seg ned og om natten (2, 3). Pasienter med tynnfibernevropati kan i tillegg ha både spontan paroksysmal og provosert smerte (3). Den paroksysmale smerten innebærer støt- eller sjokkliknende smerte innenfor det smertefulle området, ofte med noe utstråling og med svært varierende frekvens. Den provoserte smerten er smerte utløst ved stimulering av det smertefulle området, som regel ved berøring, trykk, men av og til ved kulde og (noe sjeldnere) varmestimuli. Typisk vil mange pasienter beskrive smerter når de tar på seg sokker og sko, føle ubehag ved trykk fra dynen om natten og at det er smertefullt å gå barbeint. Provosert smerte kan inndeles i allodyni, dvs. smerte ved et normalt ikke-smertefullt stimulus og hyperalgesi, dvs. en unormal sterk smerte ved et normalt smertefullt stimulus (4).

Årsaken til at den nevnte smerten oppstår, er sannsynligvis ulike former for hypereksitabilitet i tynne umyeliniserte C-fibre. Det kan dreie seg om unormal spontan fyring eller doble og tredoble impulser (5). Mengden av spontan fyring synes å stå i forhold til intensiteten av den opplevde smerten (6). Fenomenene mekanisk allodyni og hyperalgesi skyldes i all hovedsak sentralnervøs sensitisering, altså endringer i det sentrale nervesystemet som inntreffer både i ryggmargen og høyere opp i sentralnervesystemet (7).

Tilstander som er assosiert med eller kan gi tynnfibernevropati

Metabolske

Diabetes mellitus type 1 og 2

Nedsatt glukosetoleranse (omdiskutert)

Hypotyreose

Hyperlipidemi

Leversvikt

Nyresvikt

Arvelige

Fabrys sykdom

Familiær amyloidose

Hereditær sensorisk og autonom nevropati

Toksiske

Alkoholmisbruk

B6-intoksikasjon

Cytostatika

Andre

Antifosfolipidsyndrom

Bindevevssykdommer

Cøliaki

Hemokromatose

Hiv

Kryoglobulinemi

Monoklonal gammopati

Paraneoplasi

Sarkoidose

Sjögrens syndrom

Den langt vanligste årsaken er antakelig diabetes mellitus (14). I flere studier har man også funnet at det er økt forekomst av forstadier til diabetes og nedsatt glukosetoleranse hos pasienter med tynnfibernevropati (15, 16) og pekt på at det er en mulig årsakssammenheng.

Det viktigste kriteriet for å mistenke tynnfibernevropati er manglende funn forenlig med generell tykkfibernevropati, dvs. at det er intakt sensibilitet for lett berøring, vibrasjon og leddsans, normal motorikk og normale reflekser. Pasientene vil ofte ha nærmest normal nevrologisk status, men kan ha nedsatt sensibilitet for stikk og temperatur, eventuelt også allodyni eller hyperalgesi, oftest i sokkeformet mønster. Allodyni undersøkes ved bruk av lett berøring med bomull eller en børste og hyperalgesi ved stikk med sikkerhetsnål eller liknende, for eksempel en spiss tannstikker.

Den viktigste delen av den kliniske undersøkelsen er anamneseopptaket, med spesielt fokus på eventuelle smerter, endret svettemønster og plager med kalde ekstremiteter.

Hudbiopsi. Hudbiopsi tas som en 3 mm eller 4 mm stansebiopsi i lokalanestesi, normalt fra nedre del av leggen

Termotest. Dette er en test av afferente temperaturmedierende A-delta-fibre og C-fibre. En termode festes på pasientens hud. Temperaturen i termoden kan være 10 – 50 °C. Pasienten signaliserer ved å trykke på en knapp når han eller hun kjenner den minste antydning til kulde (en test av A-delta-fibre), den minste antydning til varme (en test av C-fibre) og også ved terskel til kuldesmerte (en test av både A-delta-fibre og C-fibre) og varmesmerte (en test av C-fibre) (illustrasjon).

QSART (Quantitative sudomotor axon reflex test). Dette er en spesifikk og objektiv test av de efferente autonome sudomotorfibrene. Testen måler volum av svette på huden etter iontoforese av acetylkolin.

Andre tester på tynnfiberfunksjon. Det finnes en rekke andre tester på tynnfibre. Noen undersøker primært efferente fibre ved aksonreflekstest og svettetester. Det finnes også mer sofistikerte hudbiopsimetoder som kan avdekke tidlige forandringer i tynnfibre.

Hvis man kjenner årsaken til pasientens tynnfibernevropati, kan det i noen tilfeller være mulig å redusere symptomene ved behandling eller forebygging av grunnlidelsen. Foruten en alvorlig autonom nevropati som kan kreve overvåking og behandling i en intensivenhet, vil ofte smerte være det enkeltsymptomet som gjør at en pasient oppsøker lege.

Førstehåndspreparater ved behandling av smertefull tynnfibernevropati er trisykliske antidepressiver (amitriptylin, nortriptylin), serotonin-noradrenalinreopptakshemmere (duloksetin) eller anitiepileptika (gabapentin eller pregabalin) (34, 35). Antidepressiver og antiepileptika brukes alene eller i kombinasjon, og ved manglende eller partiell effekt kan det være aktuelt å prøve ut depotopioider til noen pasienter som tilleggsmedikasjon eller som monoterapi (28, 35).

Tynnfibernevropati forekommer ved mange vanlige lidelser, men det er grunn til å anta at det er en underdiagnostisert tilstand. Ved klinisk mistanke og normale funn ved EMG/nevrografi bør pasienten henvises til spesifikke tynnfibertester.

Ukjent sin avatar

Cramps and small-fiber neuropathy.

Om at kramper kan ha grunnlag i small fiber neuropathy. Nevropatien øker betennelsesutskillelsen fra nervecellene som dermed øker muskelsammentreningssignalene.

http://www.ncbi.nlm.nih.gov/m/pubmed/23813593/

Introduction: Muscle cramps are a common complaint and are thought to arise from spontaneous discharges of the motor nerve terminal.

Conclusions: Our data show that 60% of patients with muscle cramps who lack neuropathic complaints have SFN, as documented by decreased IENFD. Cramps may originate as local mediators of inflammation released by damaged small nerve that excite intramuscular nerves.